Linear motion

Linear motion, also called rectilinear motion,[1] is one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension. The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position , which varies with (time). An example of linear motion is an athlete running a 100-meter dash along a straight track.[2]

Linear motion is the most basic of all motion. According to Newton's first law of motion, objects that do not experience any net force will continue to move in a straight line with a constant velocity until they are subjected to a net force. Under everyday circumstances, external forces such as gravity and friction can cause an object to change the direction of its motion, so that its motion cannot be described as linear.[3]

One may compare linear motion to general motion. In general motion, a particle's position and velocity are described by vectors, which have a magnitude and direction. In linear motion, the directions of all the vectors describing the system are equal and constant which means the objects move along the same axis and do not change direction. The analysis of such systems may therefore be simplified by neglecting the direction components of the vectors involved and dealing only with the magnitude.[2]

Background

Displacement

The motion in which all the particles of a body move through the same distance in the same time is called translatory motion. There are two types of translatory motions: rectilinear motion; curvilinear motion. Since linear motion is a motion in a single dimension, the distance traveled by an object in particular direction is the same as displacement.[4] The SI unit of displacement is the metre.[5][6] If is the initial position of an object and is the final position, then mathematically the displacement is given by:

The equivalent of displacement in rotational motion is the angular displacement measured in radians. The displacement of an object cannot be greater than the distance because it is also a distance but the shortest one. Consider a person travelling to work daily. Overall displacement when he returns home is zero, since the person ends up back where he started, but the distance travelled is clearly not zero.

Velocity

Velocity refers to a displacement in one direction with respect to an interval of time. It is defined as the rate of change of displacement over change in time.[7] Velocity is a vector quantity, representing a direction and a magnitude of movement. The magnitude of a velocity is called speed. The SI unit of speed is that is metre per second.[6]

Average velocity

The average velocity of a moving body is its total displacement divided by the total time needed to travel from the initial point to the final point. It is an estimated velocity for a distance to travel. Mathematically, it is given by:[8][9]

where:

  • is the time at which the object was at position and
  • is the time at which the object was at position

The magnitude of the average velocity is called an average speed.

Instantaneous velocity

In contrast to an average velocity, referring to the overall motion in a finite time interval, the instantaneous velocity of an object describes the state of motion at a specific point in time. It is defined by letting the length of the time interval tend to zero, that is, the velocity is the time derivative of the displacement as a function of time.

The magnitude of the instantaneous velocity is called the instantaneous speed.The instantaneous velocity equation comes from finding the limit as t approaches 0 of the average velocity. The instantaneous velocity shows the position function with respect to time. From the instantaneous velocity the instantaneous speed can be derived by getting the magnitude of the instantaneous velocity.

Acceleration

Acceleration is defined as the rate of change of velocity with respect to time. Acceleration is the second derivative of displacement i.e. acceleration can be found by differentiating position with respect to time twice or differentiating velocity with respect to time once.[10] The SI unit of acceleration is or metre per second squared.[6]

If is the average acceleration and is the change in velocity over the time interval then mathematically,

The instantaneous acceleration is the limit, as approaches zero, of the ratio and , i.e.,

Jerk

The rate of change of acceleration, the third derivative of displacement is known as jerk.[11] The SI unit of jerk is . In the UK jerk is also referred to as jolt.

Jounce

The rate of change of jerk, the fourth derivative of displacement is known as jounce.[11] The SI unit of jounce is which can be pronounced as metres per quartic second.

Formulation

In case of constant acceleration, the four physical quantities acceleration, velocity, time and displacement can be related by using the equations of motion.[12][13][14]

Here,

  • is the initial velocity
  • is the final velocity
  • is acceleration
  • is displacement
  • is time

These relationships can be demonstrated graphically. The gradient of a line on a displacement time graph represents the velocity. The gradient of the velocity time graph gives the acceleration while the area under the velocity time graph gives the displacement. The area under a graph of acceleration versus time is equal to the change in velocity.

Comparison to circular motion

The following table refers to rotation of a rigid body about a fixed axis: is arc length, is the distance from the axis to any point, and is the tangential acceleration, which is the component of the acceleration that is parallel to the motion. In contrast, the centripetal acceleration, , is perpendicular to the motion. The component of the force parallel to the motion, or equivalently, perpendicular to the line connecting the point of application to the axis is . The sum is over from to particles and/or points of application.

Analogy between Linear Motion and Rotational motion[15]
Linear motion Rotational motion Defining equation
Displacement = Angular displacement =
Velocity = Angular velocity =
Acceleration = Angular acceleration =
Mass = Moment of Inertia =
Force = Torque =
Momentum= Angular momentum=
Kinetic energy = Kinetic energy =

The following table shows the analogy in derived SI units:

See also

References

  1. ^ Resnick, Robert and Halliday, David (1966), Physics, Section 3-4
  2. ^ a b "Basic principles for understanding sport mechanics".
  3. ^ "Motion Control Resource Info Center". Retrieved 19 January 2011.
  4. ^ "Distance and Displacement".
  5. ^ "SI Units".
  6. ^ a b c "SI Units".
  7. ^ Elert, Glenn (2021). "Speed & Velocity". The Physics Hypertextbook.
  8. ^ "Average speed and average velocity".
  9. ^ "Average Velocity, Straight Line".
  10. ^ "Acceleration". Archived from the original on 2011-08-08.
  11. ^ a b "What is the term used for the third derivative of position?".
  12. ^ "Equations of motion" (PDF).
  13. ^ "Description of Motion in One Dimension".
  14. ^ "What is derivatives of displacement?".
  15. ^ "Linear Motion vs Rotational motion" (PDF).

Further reading

  • Resnick, Robert and Halliday, David (1966), Physics, Chapter 3 (Vol I and II, Combined edition), Wiley International Edition, Library of Congress Catalog Card No. 66-11527
  • Tipler P.A., Mosca G., "Physics for Scientists and Engineers", Chapter 2 (5th edition), W. H. Freeman and company: New York and Basing stoke, 2003.

Media related to Linear movement at Wikimedia Commons

Read other articles:

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus.Artikel biografi ini ditulis menyerupai resume atau daftar riwayat hidup (Curriculum Vitae). Tolong bantu perbaiki agar netral dan ensiklopedis.Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tuli...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: San Pedro High School – news · newspapers · books · scholar · JSTOR (June 2020) (Learn how and when to remove this template message) Public school in San Pedro, California, United StatesSan Pedro Senior High SchoolLocation1001 West 15th StreetSan Pedro, Califor...

 

Ця стаття про комуну. Про село див. Кошна. комуна КошнаCoșna Країна  Румунія Повіт  Сучава Телефонний код +40 230 (Romtelecom, TR)+40 330 (інші оператори) Координати 47°22′14″ пн. ш. 25°10′53″ сх. д.H G O Висота 855 м.н.р.м. Площа 179,35 км² Населення 1496[1] (2009) Розташування Розташуванн

Rebeca LinaresLinares pada tahun 2009LahirVeronica Bazan13 Juni 1983 (umur 40)[1][2]San Sebastián, Spanyol[1][2]Nama lainRebecca LinaresWarga negaraSpanyolTinggi5 ft 3 in (1,60 m)[1] Rebeca Linares (lahir 13 Juni 1983) adalah seorang aktris porno asal Spanyol[2] Meskipun lahir di San Sebastián, Spanyol, dia telah tinggal selama bertahun-tahun di Barcelona.[3][4] Dia memilih Rebeca untuk nama panggungnya...

 

Este artigo não cita fontes confiáveis. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Dezembro de 2021) José Sardinha Nascimento 13 de fevereiro de 1845Vila Nova de Gaia Morte 28 de novembro de 1906 Cidadania Reino de Portugal Alma mater Universidade do Porto Ocupação arquiteto [edite no Wikidata] José Geraldo da Silva Sardinha (Vila Nov...

 

Not to be confused with La Maison Francaise (Nazareth College) or La Maison Francaise (Rockefeller Center). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2014) (Learn how and when to remove this t...

Species of plant Oenanthe javanica Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Apiales Family: Apiaceae Genus: Oenanthe Species: O. javanica Binomial name Oenanthe javanica(Blume) DC. Synonyms[2] Cyssopetalum javanicum Turcz. Dasyloma corticatum Miq. Dasyloma japonicum Miq. Dasyloma javanicum (Blume) Miq. Dasyloma laciniatum (Blume) Miq. Dasyl...

 

Loka anjoroiSajianJajanan pasarTempat asal IndonesiaDaerahSulawesiSuhu penyajianSuhu ruanganBahan utamaPisang Loka anjoroi adalah sajian tradisional yang berbahan baku pisang dan menjadi makanan khas Polewali Mandar, Sulawesi Barat. Makanan ini biasanya dihidangkan pada jam 9- 10 pagi hari dan juga biasanya dihidangkan pada acara acara pertemuan kekeluargaan.[1] Loka Anjoroi menjadi makanan pokok bagi masyarakat Mandar dikarenakan sulitnya mendapatkan beras, sehingga mereka mengg...

 

Salix daltoniana Біологічна класифікація Царство: Рослини (Plantae) Клада: Судинні рослини (Tracheophyta) Клада: Покритонасінні (Angiosperms) Клада: Евдикоти (Eudicots) Клада: Розиди (Rosids) Порядок: Мальпігієцвіті (Malpighiales) Родина: Вербові (Salicaceae) Рід: Верба (Salix) Вид: S. daltoniana Біноміальна назва Salix daltonianaA...

Virgen de la Quinta Angustia Autor Gaspar de AcostaCreación 1604Ubicación Capilla de Nuestra Madre de las Angustias, Iglesia de San Vicente Mártir de Zamora (Castilla y León, España)Estilo manieristaMaterial madera policromadaDimensiones 104 × 50 × 55 cm[editar datos en Wikidata] La Virgen de la Quinta Angustia es una talla de 1604 realizada por Gaspar de Acosta. Portada antiguamente el Viernes Santo,[1]​ la imagen está ubicada en la Capilla de Nuestra Madre de las Ang...

 

2002 Dutch filmSwingersDirected byStephan BrenninkmeijerWritten byStephan BrenninkmeijerProduced byStephan Brenninkmeijer, Roel ReinéStarringEllen Van Der Koogh Joep Sertons Nienke Brinkhuis Danny de KokMusic bySoundpaletteDistributed byA-Film Distributions, Epix MediaRelease date 30 September 2002 (2002-09-30) Running time93 minutesCountryNetherlandsLanguageDutchBudget$25,000 Swingers is a Dutch romantic drama film released in 2002 and tells the story of a thirty-something co...

 

Australian fox hunting club Oaklands Hunt ClubHunt typeFox huntingCountry AustraliaHistoryFounded1888Hunt informationHound breedFoxhoundHunt countryVictoriaMaster(s)R. C. Cameron-Kennedy & R. InglesantQuarryFoxKennelledGreenvaleWebsiteoaklandshunt.com.auvte The Oaklands Hunt Club is an Australian fox hunting club located in the Greenvale, Victoria. History The club was established on 28 July 1888, after its inaugural hunt that day from the Inverness Hotel in Bulla.[1] The clu...

American artist Christina StrainStrain at Comic-Con 2007BornApril 27, 1981 (1981-04-27) (age 42)Seoul, South KoreaNationalityAmericanArea(s)Writer, ColouristNotable worksRunaways Grimm Fairy Tales Generation X Spider-Man Loves Mary Jane The Magicians Christina Strain is an American comic book colorist, writer and screenwriter. Strain formerly worked for Marvel Comics as a colorist before pursuing a career as a writer. Strain's notable works include; the award-winning Marvel series R...

 

Smith & Wesson Model 1913 Тип самозарядный пистолет[1] Страна  Бельгия[2] История службы На вооружении  Бельгия История производства Конструктор Шарль Филибер Клемен[2] Производитель Smith & Wesson[1] Годы производства 1913—1921[1] Всего выпущено 8350[1] Стоимост...

 

稚内信用金庫Wakkanai Shinkin Bank 稚内信用金庫本店種類 信用金庫略称 稚内しんきん、わかしん本店所在地 日本〒097-8666北海道稚内市中央3丁目9-6設立 1945年(昭和20年)10月15日業種 金融業法人番号 8450005002872 金融機関コード 1021事業内容 協同組織金融機関代表者 増田雅俊(理事長)資本金 6億円(2022年3月・協同組織金融機関の為出資金)純利益 3億9,357万4000円(2022年3月31...

1961 film AkikoDirected byLuigi Filippo D'AmicoWritten byGaspare Cataldo Luigi Filippo D'Amico Ernesto Gastaldi Ugo GuerraStarringAkiko WakabayashiCinematographyAlfio ContiniEdited byJolanda BenvenutiMusic byTeo UsuelliRelease date1961LanguageItalian Akiko is a 1961 Italian comedy film written and directed by Luigi Filippo D'Amico.[1][2] Plot In Rome, Mrs. Ottavia Colasanto has not had news of her husband since he went to Japan eighteen years ago. She is considered practically...

 

Ejército Restaurador del Perú Bandera de la República PeruanaActiva 1836-1839País República Peruana (1837) República Peruana (1839)Rama/s Ejército de Tierra.Tipo ejército de tierraorganizaciónParte de guerra contra la Confederación Perú-BolivianaAlto mandoComandantesnotables Agustín GamarraRamón CastillaManuel Ignacio de VivancoAntonio Gutiérrez de la FuenteGuerras y batallas Guerra contra la Confederación Perú-Boliviana[editar datos en Wikidata] El Ejército Restaur...

 

Gemeinde Quinto Wappen Karte von Spanien Quinto (Saragossa) (Spanien) Basisdaten Land: Spanien Spanien Autonome Gemeinschaft: Aragonien Aragonien Provinz: Saragossa Comarca: Ribera Baja del Ebro Gerichtsbezirk: Caspe Koordinaten 41° 25′ N, 0° 30′ W41.424722222222-0.4975175Koordinaten: 41° 25′ N, 0° 30′ W Höhe: 175 msnm Fläche: 300,99 km² Einwohner: 1.093 (1. Jan. 2022)[1] Bevölkerungsdichte: 4 Einw./km² Postl...

Indian Academy of PediatricsAbbreviationIAPFormation1963TypePediatric associationHeadquartersMumbai, IndiaRegion served IndiaMain organIndian Pediatrics 2013 stamp dedicated to the Indian Academy of Pediatrics The Indian Academy of Pediatrics is the association of Indian pediatricians. It was established in 1963, in Mumbai, India and claims to have 23,000 members, as of the year 2013[1] The head office of IAP is in Mumbai while Delhi is the seat of its official publication – Indian ...

 

British literary magazine This article is about the British literary magazine. For the American literary magazine, see The Literary Review. Literary ReviewEditorNancy SladekFrequency11 per yearCirculation44,750 (as of 2006[?])[1][self-published source]Founded1979; 44 years ago (1979)CountryUnited KingdomBased inLondonLanguageEnglishWebsiteliteraryreview.co.ukISSN0144-4360 Literary Review is a British literary magazine founded in 1979 by Anne Smith, then head ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!