Telluric acid

Telluric acid
Skeletal formula of ortho-telluric acid
Ball-and-stick model of ortho-telluric acid
Names
IUPAC name
Hexahydroxidotellurium
Other names
  • Orthotelluric acid
  • Hexahydroxytellurium
  • Hexahydroxy-λ6-tellane
  • Tellurium hexahydroxide
  • Tellurium(VI) hydroxide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.029.334 Edit this at Wikidata
UNII
  • InChI=1S/H2O4Te/c1-5(2,3)4/h(H2,1,2,3,4) checkY
    Key: XHGGEBRKUWZHEK-UHFFFAOYSA-N checkY
  • InChI=1/H2O4Te/c1-5(2,3)4/h(H2,1,2,3,4)
    Key: XHGGEBRKUWZHEK-UHFFFAOYAT
  • O[Te](O)(O)(O)(O)O
Properties
Te(OH)6
Molar mass 229.64 g·mol−1
Appearance White monoclinic crystals
Density 3.07 g/cm3
Melting point 136 °C (277 °F; 409 K)
50.1 g/(100 ml) at 30 °C[1]
Acidity (pKa) 7.5, 11, 14[2]
Conjugate base Tellurate
Structure
octahedral
0 D
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
corrosive
Related compounds
Other anions
Hydrotelluric acid
Tellurous acid
Hydrogen telluride
Related compounds
Teflic acid
Sulfuric acid
Selenic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Telluric acid, or more accurately orthotelluric acid, is a chemical compound with the formula Te(OH)6, often written as H6TeO6. It is a white crystalline solid made up of octahedral Te(OH)6 molecules which persist in aqueous solution.[3] In the solid state, there are two forms, rhombohedral and monoclinic, and both contain octahedral Te(OH)6 molecules,[4] containing one hexavalent tellurium (Te) atom in the +6 oxidation state, attached to six hydroxyl (–OH) groups, thus, it can be called tellurium(VI) hydroxide. Telluric acid is a weak acid which is dibasic, forming tellurate salts with strong bases and hydrogen tellurate salts with weaker bases or upon hydrolysis of tellurates in water.[4][5] It is used as tellurium-source in the synthesis of oxidation catalysts.

Preparation

Telluric acid is formed by the oxidation of tellurium or tellurium dioxide with a powerful oxidising agent such as hydrogen peroxide, chromium trioxide or sodium peroxide.[4]

TeO2 + H2O2 + 2 H2O → Te(OH)6

Crystallization of telluric acid solutions below 10 °C gives telluric acid tetrahydrate Te(OH)6·4H2O.[3] It is an oxidising agent, as shown by the electrode potential for the reaction below, although it is kinetically slow in its oxidations.[4]

Te(OH)6 + 2 H+ + 2 e ⇌ TeO2 + 4 H2O, Eo = +1.02 V

Chlorine, by comparison, is +1.36 V and selenous acid is +0.74 V in oxidizing conditions.

Properties and reactions

The anhydrous acid is stable in air at 100 °C but above this it dehydrates to form polymetatelluric acid, a white hygroscopic powder (approximate composition (H2TeO4)10), and allotelluric acid, an acid syrup of unknown structure (approximate composition 3·H2TeO4·4H2O).[6][3]

Typical salts of the acid contains the anions [Te(O)(OH)5] and [Te(O)2(OH)4]2−. The presence of the tellurate ion TeO2−4 has been confirmed in the solid state structure of Rb6[TeO5][TeO4].[7] Strong heating at over 300 °C produces the α crystalline modification of tellurium trioxide, α-TeO3. [5] Reaction with diazomethane gives the hexamethyl ester, Te(OCH3)6.[3]

Telluric acid and its salts mostly contain hexacoordinate tellurium.[4] This is true even for salts such as magnesium tellurate, MgTeO4, which is isostructural with magnesium molybdate and contains TeO6 octahedra.[4]

Other forms of telluric acid

Metatelluric acid, H2TeO4, the tellurium analogue of sulfuric acid, H2SO4, is unknown. Allotelluric acid of approximate composition 3·H2TeO4·4H2O, is not well characterised and may be a mixture of Te(OH)6 and (H2TeO4)n.[3]

Other tellurium acids

Tellurous acid H2TeO3, containing tellurium in its +4 oxidation state, is known but not well characterised. Hydrogen telluride is an unstable gas that forms hydrotelluric acid upon addition to water.

References

  1. ^ Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press, ISBN 0-8493-0594-2
  2. ^ Perrin, D. D., ed. (1982) [1969]. Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution. IUPAC Chemical Data (2nd ed.). Oxford: Pergamon (published 1984). Entry 219. ISBN 0-08-029214-3. LCCN 82-16524.
  3. ^ a b c d e Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  4. ^ a b c d e f Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5
  5. ^ a b Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  6. ^ Loub, J.; Haase, W.; Mergehenn, R. (1979). "Structure of an adduct of orthotelluric acid and urea". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 35 (12): 3039–3041. Bibcode:1979AcCrB..35.3039L. doi:10.1107/S0567740879011286.
  7. ^ Catherine E. Housecroft; Alan G. Sharpe (2008). "Chapter 16: The group 16 elements". Inorganic Chemistry, 3rd Edition. Pearson. p. 526. ISBN 978-0-13-175553-6.

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!