Stibnite, sometimes called antimonite, is a sulfide mineral with the formulaSb2S3. This soft grey material crystallizes in an orthorhombic space group.[6] It is the most important source for the metalloidantimony.[7] The name is derived from the Greek στίβιstibi through the Latin stibium as the former name for the mineral and the element antimony.[3][4]
Structure
Stibnite has a structure similar to that of arsenic trisulfide, As2S3. The Sb(III) centers, which are pyramidal and three-coordinate, are linked via bent two-coordinate sulfide ions. However, some studies suggest that the actual coordination polyhedra of antimony are SbS7, with (3+4) coordination at the M1 site and (5+2) at the M2 site. Some of the secondary bonds impart cohesion and are connected with packing.[8] Stibnite is grey when fresh, but can turn superficially black due to oxidation in air.
Properties
The melting point of Sb2S3 is 823 K (550 °C; 1,022 °F).[9] The band gap is 1.88 eV at room temperature and it is a photoconductor.[10] Stibnite is also toxic upon ingestion, with symptoms similar to those of arsenic poisoning.[11]
Uses
Pastes of Sb2S3 powder in fat[12] or in other materials have been used since c. 3000 BC as eye cosmetics in the Mediterranean and farther afield; in this use, Sb2S3 is called kohl. It was used to darken the brows and lashes, or to draw a line around the perimeter of the eye.[13]
Antimony trisulfide finds use in pyrotechnic compositions, namely in the glitter and fountain mixtures. Needle-like crystals, "Chinese needles", are used in glitter compositions and white pyrotechnic stars. The "dark pyro" version is used in flash powders to increase their sensitivity and sharpen their report. It is also a component of modern safety matches. It was formerly used in flash compositions, but its use was abandoned due to toxicity and sensitivity to static electricity.[14]
Stibnite was used ever since protodynastic ancient Egypt as a medication and a cosmetic.[13] The Sunan Abi Dawood reports, “prophet Muhammad said: 'Among the best types of collyrium is antimony (ithmid) for it clears the vision and makes the hair sprout.'"[15]
The 17th century alchemist Eirenaeus Philalethes, also known as George Starkey, describes stibnite in his alchemical commentary An Exposition upon Sir George Ripley's Epistle. Starkey used stibnite as a precursor to philosophical mercury, which was itself a hypothetical precursor to the philosopher's stone.[16]
Historically, the Romans used stibnite mined in Dacia to make colourless glass, the making of which ended when this province was lost to the Roman Empire.[17]
As of May 2007, the largest specimen on public display (1000 pounds) is at the American Museum of Natural History.[18][19] The largest documented single crystals of stibnite measured ~60×5×5 cm and originated from different locations including Japan, France and Germany.[20]
Stibnite from Herja mine, Romania
Needles of stibnite within a transparent crystal of calcite (size: 4.5×3.5×1.8 cm)
Ray of sharp, striated, iridescent metallic stibnite blades
Structure of stibnite
Antimonite crystals (longest crystal: 7 cm) intergrown with calcite (length: 3 cm) from Xikuangshan Mine
^ abcAnthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (2005). "Stibnite"(PDF). Handbook of Mineralogy. Mineral Data Publishing. Retrieved 19 July 2022.
^Sabina C. Grund, K. Hanusch, H. J. Breunig, H. U. Wolf, "Antimony and Antimony Compounds" in Ullmann's Encyclopedia of Industrial Chemistry 2006, Wiley-VCH, Weinheim. doi:10.1002/14356007.a03_055.pub2
^Priesner, Claus; Figala, Karin, eds. (1998). Alchemie. Lexikon einer hermetischen Wissenschaft (in German). München: C. H. Beck. ISBN978-3-406-44106-6.
^Degryse, P.; Gonzalez, S.N.; Vanhaecke, F.; Dillis, S.; Van Ham-Meert, A. (2024). "The rise and fall of antimony: Sourcing the "colourless" in Roman glass". Journal of Archaeological Science: Reports. 53: 104344. Bibcode:2024JArSR..53j4344D. doi:10.1016/j.jasrep.2023.104344.