Hence, this enzyme has one substrate, a 3-oxo-Δ5-steroid, and one product, a 3-oxo-Δ4-steroid.
Introduction
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases transposing C=C bonds. The systematic name of this enzyme class is 3-oxosteroid Δ5-Δ4-isomerase. Other names in common use include ketosteroid isomerase (KSI), hydroxysteroid isomerase, steroid isomerase, Δ5-ketosteroid isomerase, Δ5(or Δ4)-3-keto steroid isomerase, Δ5-steroid isomerase, 3-oxosteroid isomerase, Δ5-3-keto steroid isomerase, and Δ5-3-oxosteroid isomerase.
KSI has been studied extensively from the bacteria Comamonas testosteroni (TI), formerly referred to as Pseudomonas testosteroni, and Pseudomonas putida (PI).[2] The enzymes from these two sources are 34% homologous, and structural studies have shown that the placement of the catalytic groups in the active sites is virtually identical.[3] Mammalian KSI has been studied from bovine adrenal cortex[4] and rat liver.[5] This enzyme participates in c21-steroid hormone metabolism and androgen and estrogen metabolism. An example substrate is Δ5-androstene-3,17-dione, which KSI converts to Δ4-androstene-3,17-dione.[6] The above reaction in the absence of enzyme takes 7 weeks to complete in aqueous solution.[7] KSI performs this reaction on an order of 1011 times faster, ranking it among the most proficient enzymes known.[7] Bacterial KSI also serves as a model protein for studying enzyme catalysis[8] and protein folding.[9]
Structural studies
KSI exists as a homodimer with two identical halves.[9] The interface between the two monomers is narrow and well defined, consisting of neutral or apolar amino acids, suggesting the hydrophobic interaction is important for dimerization.[9] Results show that the dimerization is essential to function.[9] The active site is highly apolar and folds around the substrate in a manner similar to other enzymes with hydrophobicsubstrates, suggesting this fold is characteristic for binding hydrophobic substrates.[10]
No complete atomic structure of KSI appeared until 1997, when an NMR structure of TI KSI was reported.[11] This structure showed that the active site is a deep hydrophobic pit with Asp-38 and Tyr-14 located at the bottom of this pit.[11] The structure is thus entirely consistent with the proposed mechanistic roles of Asp-38 and Tyr-14.
KSI catalyzes the rearrangement of a carbon-carbon double bond in ketosteroids through an enolate intermediate at a diffusion-limited rate.[2] There have been conflicting results on the ionization state of the intermediate, whether it exists as the enolate[12] or enol.[13] Pollack uses a thermodynamic argument to suggest the intermediate exists as the enolate.[2] The general base Asp-38 abstracts a proton from position 4 (alpha to the carbonyl, next to the double bond) of the steroid ring to form an enolate (the rate-limiting step)[14] that is stabilized by the hydrogen bond donating Tyr-14 and Asp-99.[2] Tyr-14 and Asp-99 are positioned deep within the hydrophobic active site and form a so-called oxanion hole.[15] Protonated Asp-38 then transfers its proton to position 6 of the steroid ring to complete the reaction.[2]
Although the mechanistic steps of the reaction are not disputed, the contributions of various factors to catalysis such as electrostatics, hydrogen bonding of the oxyanion hole, and distal binding effects are discussed below and still debated.
The Warshel group applied statistical mechanical computational methods and empirical valence bond theory to previous experimental data. It was determined that electrostatic preorganization-including ionic residues and fixed dipoles within the active site-contributes most to KSI catalysis.[16] More specifically, Tyr-14 and Asp-99 dipoles work to stabilize the growing charge which accumulates on the enolate oxygen (O-3) throughout catalysis. In a similar way, the charge on Asp38 is stabilized by surrounding residues and a water molecule during the course of the reaction.[16] The Boxer group used experimental Stark spectroscopy methods to identify the presence of H-bond-mediated electric fields within the KSI active site. These measurements quantified the electrostatic contribution to KSI catalysis (70%).[17]
The active site is lined with hydrophobic residues to accommodate the substrate, but Asp-99 and Tyr-14 are within hydrogen bonding distance of O-3.[18] The hydrogen bonds from Tyr-14 and Asp-99 are known to significantly affect the rate of catalysis in KSI.[2]Mutagenesis of this residue to alanine (D99A) or asparagine (D99N) results in a loss in activity at pH 7 of 3000-fold and 27-fold, respectively,[11][19] implicating Asp-99 as important for enzymatic activity. Wu et al.[11] proposed a mechanism that involves both Tyr-14 and Asp-99 forming hydrogen bonds directly to O-3 of the steroid. This mechanism was challenged by Zhao et al.,[20] who postulated a hydrogen bonding network with Asp-99 hydrogen bonding to Tyr-14, which in turn forms a hydrogen bond to O-3. More recently, the Herschlag group utilized unnatural amino acid incorporation to assay the importance of Tyr-14 to KSI catalysis.[21] The natural tyrosine residue was substituted with unnatural halogenated amino acids surveying a range of pKa's. There was very little difference in KSI catalytic turnover with decreasing pKa, suggesting, in contrast to the electrostatic studies outlined above, that oxyanion hole stabilization is not primarily important for catalysis.[21]
Asp-38 general acidic/basic activity and effective molarity was probed by the Herschlag group through site-directed mutagenesis and exogenous base rescue.[23] Asp-38 was mutated to Gly, nullifying catalytic activity, and exogenous rescue was attempted with carboxylates of varying size and molarity. By calculating the concentration of base needed for full rescue, the Herschlag group determined the effective molarity of Asp-38 in KSI (6400 M). Thus, Asp-38 is critical for KSI catalysis.[23]
Sigala et al. found that solvent exclusion and replacement by the remote hydrophobic steroid rings negligibly alter the electrostatic environment within the KSI oxyanion hole.[24] In addition, ligand binding does not grossly alter the conformations of backbone and side chain groups observed in X-ray structures of PI KSI. However, NMR and UV studies suggest that steroid binding restricts the motions of several active-site groups, including Tyr-16.[25][26] Recently, the Herschlag group proposed that remote binding of hydrophobic regions of the substrate to distal portions of the active site contribute to KSI catalysis (>5 kcal/mol).[27] A 4-ring substrate reacted 27,000 times faster than a single ring substrate indicating the importance of distal active site binding motifs. This activity ratio persists throughout mutagenesis of residues important to oxyanion hole stabilization, implying that distal binding is what accounts for the large aforementioned reactivity difference.[27]
Numerous physical changes occur upon steroid binding within the KSI active site. In the free enzyme an ordered water molecule is positioned within hydrogen-bonding distance of Tyr-16 (the PI equivalent of TI KSI Tyr-14) and Asp-103 (the PI equivalent of TI KSI Asp-99).[28] This and additional disordered water molecules present within the unliganded active site are displaced upon steroid binding and are substantially excluded by the dense constellation of hydrophobic residues that pack around the bound, hydrophobic steroid skeleton.[28][25]
As stated above, the degree to which various factors contribute to KSI catalysis is still debated.
Function
KSI occurs in animal tissues concerned with steroid hormonebiosynthesis, such as the adrenal, testis, and ovary.[29] KSI in Comamomas testosteroni is used in the degradation pathway of steroids, allowing this bacteria to utilize steroids containing a double bond at Δ5, such as testosterone, as its sole source of carbon.[30] In mammals, transfer of a double bond at Δ5 to Δ4 is catalyzed by 3-β-hydroxy-Δ5-steroid dehydrogenase at the same time as the dehydroxylation of 3-β-hydroxyl group to ketone group,[31] while in C. testosteroni and P. putida, Δ5,3-ketosteroid isomerase just transfers a double bond at Δ5 of 3-ketosteroid to Δ4.[32]
A Δ5-3-ketosteroid isomerase-disrupted mutant of strain TA441 can grow on dehydroepiandrosterone, which has a double bond at Δ5, but cannot grow on epiandrosterone, which lacks a double bond at Δ5, indicating that C. testosteroni KSI is responsible for transfer of the double bond from Δ5 to Δ4 and transfer of the double bond by hydrogenation at Δ5 and following dehydrogenation at Δ4 is not possible.[33]
Model enzyme
KSI has been used as a model system to test different theories to explain how enzymes achieve their catalytic efficiency. Low-barrier hydrogen bonds and unusual pKa values for the catalytic residues have been proposed as the basis for the fast action of KSI.[10][15] Gerlt and Gassman proposed the formation of unusually short, strong hydrogen bonds between KSI oxanion hole and the reaction intermediate as a means of catalytic rate enhancement.[34][35] In their model, high-energy states along the reaction coordinate are specifically stabilized by the formation of these bonds. Since then, the catalytic role of short, strong hydrogen bonds has been debated.[36][37] Another proposal explaining enzyme catalysis tested through KSI is the geometrical complementarity of the active site to the transition state, which proposes the active site electrostatics is complementary to the substrate transition state.[8]
KSI has also been a model system for studying protein folding. Kim et al. studied the effect of folding and tertiary structure on the function of KSI.[9]
References
^PDB: 3VSY; Kobe A, Caaveiro JM, Tashiro S, Kajihara D, Kikkawa M, Mitani T, Tsumoto K (March 2013). "Incorporation of rapid thermodynamic data in fragment-based drug discovery". Journal of Medicinal Chemistry. 56 (5): 2155–9. doi:10.1021/jm301603n. PMID23419007.
^ abcdefPollack RM (October 2004). "Enzymatic mechanisms for catalysis of enolization: ketosteroid isomerase". Bioorganic Chemistry. 32 (5): 341–53. doi:10.1016/j.bioorg.2004.06.005. PMID15381400.
^Cho HS, Choi G, Choi KY, Oh BH (June 1998). "Crystal structure and enzyme mechanism of Delta 5-3-ketosteroid isomerase from Pseudomonas testosteroni". Biochemistry. 37 (23): 8325–30. doi:10.1021/bi9801614. PMID9622484.
^Bertolino A, Benson AM, Talalay P (June 1979). "Activation of delta5-3-ketosteroid isomerase of bovine adrenal microsomes by serum albumins". Biochemical and Biophysical Research Communications. 88 (3): 1158–66. doi:10.1016/0006-291X(79)91530-4. PMID465075.
^Benson AM, Talalay P (April 1976). "Role of reduced glutathione in the delta(5)-3-kitosteroid isomerase reaction of liver". Biochemical and Biophysical Research Communications. 69 (4): 1073–9. doi:10.1016/0006-291X(76)90482-4. PMID6023.
^Xue LA, Kuliopulos A, Mildvan AS, Talalay P (May 1991). "Catalytic mechanism of an active-site mutant (D38N) of delta 5-3-ketosteroid isomerase. Direct spectroscopic evidence for dienol intermediates". Biochemistry. 30 (20): 4991–7. doi:10.1021/bi00234a022. PMID2036366.
^Petrounia IP, Pollack RM (January 1998). "Substituent effects on the binding of phenols to the D38N mutant of 3-oxo-delta5-steroid isomerase. A probe for the nature of hydrogen bonding to the intermediate". Biochemistry. 37 (2): 700–5. doi:10.1021/bi972262s. PMID9425094.
^Kim SW, Cha SS, Cho HS, Kim JS, Ha NC, Cho MJ, Joo S, Kim KK, Choi KY, Oh BH (November 1997). "High-resolution crystal structures of delta5-3-ketosteroid isomerase with and without a reaction intermediate analogue". Biochemistry. 36 (46): 14030–6. doi:10.1021/bi971546+. PMID9369474.
^Zhao Q, Abeygunawardana C, Gittis AG, Mildvan AS (December 1997). "Hydrogen bonding at the active site of delta 5-3-ketosteroid isomerase". Biochemistry. 36 (48): 14616–26. doi:10.1021/bi971549m. PMID9398180.
^Holman CM, Benisek WF (October 1995). "Insights into the catalytic mechanism and active-site environment of Comamonas testosteroni delta 5-3-ketosteroid isomerase as revealed by site-directed mutagenesis of the catalytic base aspartate-38". Biochemistry. 34 (43): 14245–53. doi:10.1021/bi00043a032. PMID7578024.
^ abZhao Q, Li YK, Mildvan AS, Talalay P (May 1995). "Ultraviolet spectroscopic evidence for decreased motion of the active site tyrosine residue of delta 5-3-ketosteroid isomerase by steroid binding". Biochemistry. 34 (19): 6562–72. doi:10.1021/bi00019a038. PMID7756287.
^Zhao Q, Abeygunawardana C, Mildvan AS (February 1996). "13C NMR relaxation studies of backbone and side chain motion of the catalytic tyrosine residue in free and steroid-bound delta 5-3-ketosteroid isomerase". Biochemistry. 35 (5): 1525–32. doi:10.1021/bi9525381. PMID8634283.
^ abKim SW, Cha SS, Cho HS, Kim JS, Ha NC, Cho MJ, Joo S, Kim KK, Choi KY, Oh BH (November 1997). "High-resolution crystal structures of delta5-3-ketosteroid isomerase with and without a reaction intermediate analogue". Biochemistry. 36 (46): 14030–6. doi:10.1021/bi971546+. PMID9369474.
^Horinouchi M, Kurita T, Hayashi T, Kudo T (October 2010). "Steroid degradation genes in Comamonas testosteroni TA441: Isolation of genes encoding a Δ4(5)-isomerase and 3α- and 3β-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot". The Journal of Steroid Biochemistry and Molecular Biology. 122 (4): 253–63. doi:10.1016/j.jsbmb.2010.06.002. PMID20554032. S2CID206497547.
^Gerlt JA, Gassman PG (November 1993). "Understanding the rates of certain enzyme-catalyzed reactions: proton abstraction from carbon acids, acyl-transfer reactions, and displacement reactions of phosphodiesters". Biochemistry. 32 (45): 11943–52. doi:10.1021/bi00096a001. PMID8218268.
^Gerlt JA, Gassman PG (December 1993). "An explanation for rapid enzyme-catalyzed proton abstraction from carbon acids: importance of late transition states in concerted mechanisms". Biochemistry. 115 (24): 11552–11568. doi:10.1021/ja00077a062.
Ewald W, Werbin H, Chaikoff IL (November 1965). "Evidence for the presence of 17-hydroxypregnenedione isomerase in beef adrenal cortex". Biochimica et Biophysica Acta (BBA) - General Subjects. 111 (1): 306–12. doi:10.1016/0304-4165(65)90497-6. PMID5867327.
Talalay P, Wang VS (October 1955). "Enzymic isomerization of delta5-3-ketosteroids". Biochimica et Biophysica Acta. 18 (2): 300–1. doi:10.1016/0006-3002(55)90079-2. PMID13276386.
Zicht op de plaats waar delfstoffen gewonnen wordenPuy de Lemptégy is een slapende vulkaan in het Franse Chaîne des Puys.[1] Tot 2007 werden er verschillende delfstoffen gewonnen, waaronder klei, zand, kalksteen, leem, grind en natuursteen. Geplaatst op:-- Dit artikel is een beginnetje. U wordt uitgenodigd om op bewerken te klikken om uw kennis aan dit artikel toe te voegen. Bronnen, noten en/of referenties ↑ (fr) Au cœur du puy de Lemptégy, l'ancienne carrière de pouzzolane ra...
British Big 4 railway company, active 1923–1947 This article is about the historical railway company (1923–1948). For the current train operator, see London North Eastern Railway. Not to be confused with North Eastern Railway (United Kingdom) or Northern and Eastern Railway. London and North Eastern RailwayLNER Class A1 No. 2547 Doncaster with The Flying Scotsman train in 1928.OverviewLocaleEngland; ScotlandDates of operation1 January 1923–31 December 1947PredecessorGreat Eastern Ra...
Wiehenstadion Der Haupteingang (2011) Sponsorenname(n) Häcker-Wiehenstadion Daten Ort Auf der Drift 36Deutschland 32289 Rödinghausen, Deutschland Koordinaten 52° 14′ 57,7″ N, 8° 30′ 25,2″ O52.2493628.507001100Koordinaten: 52° 14′ 57,7″ N, 8° 30′ 25,2″ O Eigentümer Horst Finkemeier/Häcker Küchen[1] Betreiber SV Rödinghausen[2] Baubeginn April 2010[3] Eröffnung 17. November 2010 (inoff...
Non-romantic love This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2014) (Learn how and when to remove this template message) Relationships(Outline) Types Genetic or adoptive Kinship Family Parent father mother Grandparent Sibling Cousin By marriage Spouse Husband Wife Open marriage Polygamy Polyandry Polygyny Group marriage Mixed-orientation Partner(s...
Philosophy that sentient individuals are the center of moral concern Part of a series onAnimal rights Overview Animal welfare Around the world History Timeline Animal cruelty Veganism Vegetarianism Primate rights in research Movement Advocates Vegans Vegetarians Groups Animal abuse Animal–industrial complex Killing Mutilation Wild animals Consumption Dogs Horses Cats Cattle Bloodsports Bullfighting Hunting Fishing Animal testing Cosmetic Captivity Zoos Circuses Oceanariums Companion animals...
Historic house in Missouri, United States This article is about the house in Missouri. For the house in Pennsylvania, see Daniel Boone Homestead. United States historic placeDaniel Boone HomeU.S. National Register of Historic PlacesU.S. Historic district Show map of MissouriShow map of the United StatesLocationDefiance, MissouriCoordinates38°39′6″N 90°51′14″W / 38.65167°N 90.85389°W / 38.65167; -90.85389ArchitectBoone FamilyArchitectural styleGeorgianN...
Piotr i PawełTypeJoint-stock companyIndustryRetailFounded1990; 33 years ago (1990)FoundersPiotr Woś, Paweł Woś, Eleonora WośDefunctEnd of 2019HeadquartersPoznań, PolandNumber of locationsLess than 70 (2019)Area servedPolandKey peopleMaciej StoińskiRevenuezl 2.123 billionNet incomezl 514 million (2016)[1]Number of employees4000 (2010)Websitewww.piotripawel.pl Piotr i Paweł was a retail chain of delicatessen and supermarket stores.[2]...
Georgian footballer Mamia Jikia Mamia Jikia in 2018Personal informationDate of birth (1975-12-11) 11 December 1975 (age 47)Place of birth Poti, Georgian SSRHeight 1.81 m (5 ft 11 in)Position(s) MidfielderSenior career*Years Team Apps (Gls)1991 FC Zugdidi-91 8 (3)1991–1992 FC Odishi Zugdidi 17 (1)1992–1994 FC Shevardeni-1906 Tbilisi 45 (10)1995 LASK Linz 0 (0)1996 FC Shevardeni-1906 Tbilisi 14 (3)1996 FC Odishi Zugdidi 14 (4)1997–2002 Ruch Chorzów 127 (8)2002–2004 ...
Football clubLorca FCFull nameLorca Fútbol Club, S.A.D.Founded1 June 2003; 20 years ago (1 June 2003) as La Hoya Deportiva Club de FútbolDissolved2022GroundFrancisco Artés CarrascoLorca, Murcia, SpainCapacity8,1202021–22Preferente Autonómica – Group 2, 15th of 15 (withdrew) Home colours Away colours Not to be confused with CF Lorca Deportiva. Lorca Fútbol Club was a Spanish football team based in Lorca, in the autonomous community of the Region of Murcia. Founded in 2003...
1992 Type 23 or Duke-class frigate of the Royal Navy For other ships with the same name, see HMS Lancaster. HMS Lancaster in the Caribbean Sea during 2013 History United Kingdom NameLancaster OrderedSeptember 1986 BuilderYarrow Shipbuilders Laid down18 December 1987 Launched24 May 1990 Sponsored byQueen Elizabeth II Commissioned1 May 1992 RefitMajor 2010–2012, LIFEX 2017–2019 HomeportHMNB Portsmouth (forward deployed to HMS Jufair) Nickname(s) The Queen's Frigate, The Red...
Pittsburgh-originating mascot race Oliver Onion redirects here. For the British author, see Oliver Onions. A Pierogy Race featuring (from left) Oliver Onion, Cheese Chester, and the Pirate Parrot. The Great Pittsburgh Pierogy Race N'at, commonly called the Great Pierogy Race, is an American mascot race between innings during a Pittsburgh Pirates baseball game that features seven contestants racing in giant pierogi costumes: Potato Pete (blue hat), Jalapeño Hannah (green hat), Cheese Chester ...
Hospital in WalesTregaron HospitalHywel Dda University Health BoardTregaron HospitalShown in CeredigionGeographyLocationTregaron, Wales, United KingdomCoordinates52°12′56″N 3°56′09″W / 52.2156°N 3.9357°W / 52.2156; -3.9357OrganisationCare systemPublic NHSTypeCommunity HospitalHistoryOpened1876LinksListsHospitals in Wales Tregaron Hospital (Welsh: Ysbyty Tregaron) is a community hospital in Tregaron, Wales. It is managed by the Hywel Dda University Health Bo...
Newspaper covering Teesside, Northern England This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: TeessideLive – news · newspapers · books · scholar · JSTOR (August 2011) (Learn how and when to remove this template message) TeessideLiveTypeDaily regional newspaperFormatCompact/TabloidOwner(s)Reach plcEditorNeil ...
Japanese marathon runner Mizuki Noguchi Medal record Women's athletics Representing Japan Olympic Games 2004 Athens Marathon World Championships 2003 Paris Marathon Mizuki Noguchi (野口 みずき, Noguchi Mizuki, born July 3, 1978) is a Japanese professional long-distance runner who specialises in the marathon event. She is an Olympic champion over the distance. Initially starting out as a track and cross country athlete, her first major success was becoming the Asian cross country ch...
1993 studio album by UnanimatedIn the Forest of the Dreaming DeadStudio album by UnanimatedReleasedFebruary 1993RecordedMay-/June 1992 at Unicorn/Moose Studios, Noble House StudiosGenreMelodic death metal, black metalLength43:29LabelNo Fashion RecordsProducerAnders Olsson, Micke Lindh and UnanimatedUnanimated chronology In the Forest of the Dreaming Dead(1993) Ancient God of Evil(1995) In the Forest of the Dreaming Dead is the debut studio album by the Swedish melodic death metal band...
Species of mammal Giant golden mole Conservation status Endangered (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Afrosoricida Family: Chrysochloridae Genus: Chrysospalax Species: C. trevelyani Binomial name Chrysospalax trevelyani(Günther, 1875) The giant golden mole (Chrysospalax trevelyani) is a small mammal found in Africa. At 23 centimetres (9.1 in) in length, it is the largest of the golden mole...
Amad Diallo Datos personalesNacimiento Abiyán, Costa de Marfil11 de julio de 2002 (21 años)Nacionalidad(es) MarfileñaAltura 1,73 m (5′ 8″)[1]Peso 72 kg (158 lb)[1]Carrera deportivaDeporte FútbolClub profesionalDebut deportivo 2019(Atalanta B. C.)Club Manchester United F. C.Liga Premier LeaguePosición Delantero[1]Dorsal(es) 16Goles en clubes 19Selección nacionalSelección CIV Costa de MarfilDebut 26 de marzo de 2021Dorsal(es) 10Part. (gol...
Villa GaiaVista frontale della villa da Villa Dugnani CittadiniLocalizzazioneStato Italia LocalitàRobecco sul Naviglio IndirizzoNaviglio Grande, 0 (P) Coordinate45°26′14.07″N 8°53′23.79″E / 45.437242°N 8.889943°E45.437242; 8.889943Coordinate: 45°26′14.07″N 8°53′23.79″E / 45.437242°N 8.889943°E45.437242; 8.889943 Informazioni generaliCondizioniIn uso Costruzionemetà dei secoli XV-XVIII secolo Stilebarocco con inserti rinascimentali...
Radio station in Lethbridge, Alberta For the Monroe, Louisiana radio station known as Rock 106, see KXRR. CJRX-FMLethbridge, AlbertaBroadcast areaLethbridge CountyFrequency106.7 MHzBranding106.7 RockProgrammingFormatMainstream rockAffiliationsLethbridge HurricanesOwnershipOwnerRogers Radio(Rogers Media, Inc.)Sister stationsCFRV-FMHistoryFirst air date1926 as CJOCFormer call signsCJOC (1926-2000)Former frequencies1100 kHz (AM) (1926-1928)1120 kHz (1928-1942)1400 kHz (1942-1960)1220 kHz (1960-2...