Eadie–Hofstee diagram

Eadie–Hofstee plot of v against v/a for Michaelis–Menten kinetics

In biochemistry, an Eadie–Hofstee plot (or Eadie–Hofstee diagram) is a graphical representation of the Michaelis–Menten equation in enzyme kinetics. It has been known by various different names, including Eadie plot, Hofstee plot and Augustinsson plot. Attribution to Woolf is often omitted, because although Haldane and Stern[1] credited Woolf with the underlying equation, it was just one of the three linear transformations of the Michaelis–Menten equation that they initially introduced. However, Haldane indicated in 1957 that Woolf had indeed found the three linear forms:[2]

In 1932, Dr. Kurt Stern published a German translation of my book Enzymes, with numerous additions to the English text. On pp. 119–120, I described some graphical methods, stating that they were due to my friend Dr. Barnett Woolf. [...] Woolf pointed out that linear graphs are obtained when is plotted against , against , or against , the first plot being most convenient unless inhibition is being studied.

Derivation of the equation for the plot

The simplest equation for the rate of an enzyme-catalysed reaction as a function of the substrate concentration is the Michaelis-Menten equation, which can be written as follows:

in which is the rate at substrate saturation (when approaches infinity, or limiting rate, and is the value of at half-saturation, i.e. for , known as the Michaelis constant. Eadie[3] and Hofstee[4] transformed this into straight-line relationship. Multiplication of both sides by gives:

This can be directly rearranged to express a straight-line relationship:

which shows that a plot of against is a straight line with intercept on the ordinate, and slope (Hofstee plot).

In the Eadie plot the axes are reversed:

with intercept on the ordinate, and slope .

These plots are kinetic versions of the Scatchard plot used in ligand-binding experiments.

Attribution to Augustinsson

The plot is occasionally attributed to Augustinsson[5] and referred to the Woolf–Augustinsson–Hofstee plot[6][7][8] or simply the Augustinsson plot.[9] However, although Haldane, Woolf or Eadie were not explicitly cited when Augustinsson introduced the versus equation, both the work of Haldane[10] and of Eadie[3] are cited at other places of his work and are listed in his bibliography.[5]: 169 and 171 

Effect of experimental error

Experimental error is usually assumed to affect the rate and not the substrate concentration , so is the dependent variable.[11] As a result, both ordinate and abscissa are subject to experimental error, and so the deviations that occur due to error are not parallel with the ordinate axis but towards or away from the origin. As long as the plot is used for illustrating an analysis rather than for estimating the parameters, that matters very little. Regardless of these considerations various authors[12][13][14] have compared the suitability of the various plots for displaying and analysing data.

Use for estimating parameters

Like other straight-line forms of the Michaelis–Menten equation, the Eadie–Hofstee plot was used historically for rapid evaluation of the parameters and , but has been largely superseded by nonlinear regression methods that are significantly more accurate when properly weighted and no longer computationally inaccessible.

Making faults in experimental design visible

Recognizing poor design in Eadie–Hofstee plots, with most values too large (left) or too small (right)

As the ordinate scale spans the entire range of theoretically possible vales, from to one can see at a glance at an Eadie–Hofstee plot how well the experimental design fills the theoretical design space, and the plot makes it impossible to hide poor design. By contrast, the other well known straight-line plots make it easy to choose scales that suggest that the design is better than it is. Faulty design, as shown in the right-hand diagram, is common with experiments with a substrate that is not soluble enough or too expensive to use concentrations above , and in this case cannot be estimated satisfactorily. The opposite case, with values concentrated above (left-hand diagram) is less common but not unknown, as for example in a study of nitrate reductase.[15]

See also

Footnotes and references

  1. ^ Haldane, John Burdon Sanderson; Stern, Kurt Günter (1932). Allgemeine Chemie der Enzyme. Wissenschaftliche Forschungsberichte, Naturwissenschaftliche Reihe, herausgegeben von Dr. Raphael Eduard Liesegang. Vol. 28. Dresden and Leipzig: Theodor Steinkopff. pp. 119–120. OCLC 964209806.
  2. ^ Haldane JB (1957). "Graphical Methods in Enzyme Chemistry". Nature. 179 (4564): 832. Bibcode:1957Natur.179R.832H. doi:10.1038/179832b0. ISSN 1476-4687. S2CID 4162570.
  3. ^ a b Eadie GS (1942). "The Inhibition of Cholinesterase by Physostigmine and Prostigmine". Journal of Biological Chemistry. 146: 85–93. doi:10.1016/S0021-9258(18)72452-6.
  4. ^ Hofstee BH (October 1959). "Non-inverted versus inverted plots in enzyme kinetics". Nature. 184 (4695): 1296–1298. Bibcode:1959Natur.184.1296H. doi:10.1038/1841296b0. PMID 14402470. S2CID 4251436.
  5. ^ a b Augustinsson KB (1948). "Cholinesterases: A study in comparative enzymology". Acta Physiologica Scandinavica. 15: Supp. 52.
  6. ^ Kobayashi H, Take K, Wada A, Izumi F, Magnoni MS (June 1984). "Angiotensin-converting enzyme activity is reduced in brain microvessels of spontaneously hypertensive rats". Journal of Neurochemistry. 42 (6): 1655–1658. doi:10.1111/j.1471-4159.1984.tb12756.x. PMID 6327909. S2CID 20944420.
  7. ^ Barnard JA, Ghishan FK, Wilson FA (March 1985). "Ontogenesis of taurocholate transport by rat ileal brush border membrane vesicles". The Journal of Clinical Investigation. 75 (3): 869–873. doi:10.1172/JCI111785. PMC 423617. PMID 2579978.
  8. ^ Quamme GA, Freeman HJ (July 1987). "Evidence for a high-affinity sodium-dependent D-glucose transport system in the kidney". The American Journal of Physiology. 253 (1 Pt 2): F151–F157. doi:10.1152/ajprenal.1987.253.1.F151. PMID 3605346. S2CID 28199356.
  9. ^ Dombi GW (October 1992). "Limitations of Augustinsson plots". Computer Applications in the Biosciences. 8 (5): 475–479. doi:10.1093/bioinformatics/8.5.475. PMID 1422881.
  10. ^ Haldane JB (1930). Plimmer RH, Hopkins FG (eds.). Enzymes. London, New York: Longmans, Green, & Company. OCLC 615665842.
  11. ^ This is likely to be true, at least approximately, though it is probably optimistic to think that is known exactly.
  12. ^ Dowd JE, Riggs DS (February 1965). "A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations". The Journal of Biological Chemistry. 240 (2): 863–869. doi:10.1016/S0021-9258(17)45254-9. PMID 14275146.
  13. ^ Atkins GL, Nimmo IA (September 1975). "A comparison of seven methods for fitting the Michaelis-Menten equation". The Biochemical Journal. 149 (3): 775–777. doi:10.1042/bj1490775. PMC 1165686. PMID 1201002.
  14. ^ Cornish-Bowden A (27 February 2012). Fundamentals of Enzyme Kinetics (4th ed.). Weinheim, Germany: Wiley-Blackwell. pp. 51–53. ISBN 978-3-527-33074-4.
  15. ^ Buc, J.; Santini, C. L.; Blasco, F.; Giordani, R.; Cárdenas, M. L.; Chippaux, M.; Cornish-Bowden, A.; Giordano, G. (1995). "Kinetic studies of a soluble αβ complex of nitrate reductase A from Escherichia coli: Use of various αβ mutants with altered β subunits". Eur. J. Biochem. 234 (3): 766–772. doi:10.1111/j.1432-1033.1995.766_a.x.

Read other articles:

Casino in Nevada, United States Silver City CasinoSilver CityShow map of Las Vegas StripShow map of Nevada Location Winchester, Nevada Address 3001 Las Vegas Boulevard SouthOpening date1973Closing dateOctober 31, 1999; 24 years ago (October 31, 1999)ThemeWesternTotal gaming space20,000 sq ft (1,900 m2)Casino typeLandOwnerMajor Riddle (1974–1981) Circus Circus Enterprises (1981–1999) Luke Brugnara (1999–2002)Previous namesRiata CasinoCoordinates36°7′57″N ...

 

 

嘉穂劇場 情報完成 1931年開館 1931年収容人員 約1,200人客席数 1階席 450 - 800名2階席 300 - 400名用途 演劇所在地 〒820-0041福岡県飯塚市飯塚5番23号外部リンク 嘉穂劇場テンプレートを表示 嘉穂劇場(かほげきじょう)は、福岡県飯塚市にある劇場である。建物は国の登録有形文化財[1]。近代化産業遺産に認定されている[2]。 歴史 1931年(昭和6年)、当時の嘉穂郡飯

 

 

Eleições presidenciais portuguesas de 2016 Distritos: Aveiro | Beja | Braga | Bragança | Castelo Branco | Coimbra | Évora | Faro | Guarda | Leiria | Lisboa | Portalegre | Porto | Santarém | Setúbal | Viana do Castelo | Vila Real | Viseu | Açores | Madeira | Estrangeiro ← 2011 •  • 2021 → Eleições presidenciais portuguesas de 2016 no distrito do Porto 24 de janeiro de 2016 Demografia eleitoral Hab. inscritos:  1 592 891 Votant...

2016年夏季奥林匹克运动会突尼斯代表團突尼斯国旗IOC編碼TUNNOC突尼西亞奧林匹克委員會網站www.cnot.org.tn(法文)2016年夏季奥林匹克运动会(里約熱內盧)2016年8月5日至8月21日運動員60參賽項目17个大项旗手开幕式:烏薩馬·邁盧利(游泳)[1]闭幕式:Oussama Oueslati(跆拳道)[2]獎牌榜排名第76 金牌 銀牌 銅牌 總計 0 0 3 3 历届奥林匹克运动会参赛记录(总结)夏季奥林

 

 

Das Praunsche Kabinett war eine berühmte Privatsammlung in Nürnberg die von 1616 bis 1801 bestand. Teile dieser Sammlung werden heute in Museen in Berlin, Budapest (Museum der Bildenden Künste), Dresden, Kopenhagen, London, Los Angeles, München, Nürnberg (Germanisches Nationalmuseum), Paris und Washington, D.C. aufbewahrt. Inhaltsverzeichnis 1 Geschichte 2 Umfang 3 Literatur 4 Einzelnachweise Geschichte Das Praunsche Stiftungshaus Der Kaufmann Paulus II. Praun (1548–1616) begründete d...

 

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 6 de diciembre de 2019. Sociedad Nacional de Radio y Televisión Acrónimo SNRTVTipo PrivadaFundación 12 de mayo de 2004Sede central Perú PerúPresidente Michelle Szejer AragonésAsociados Grupo ATVLatina TelevisiónGrupo Plural TVPanamericana TelevisiónCorporación UniversalGrupo RPPCRP RadiosMiembro de CONFIEPSitio web SNRTVCronología Unión Peruana de Radiodifusión ←S...

Danish noble For others with the same name or surname, see Krag (surname). Portrait of Dorothea Krag Dorothea Krag (27 September 1675 – 10 October 1754) was a Danish Postmaster General and noble. Dorothea was married first to count Jens Juel in 1694, and second to the king's illegitimate half brother Christian Gyldenløve in 1701. As the widow of Count Christian Gyldenløve, the Postmaster General since 1686, she was granted the income from the office from 1703 until ...

 

 

East African ethnic group SwahiliWaswahili وَسوَحِيلِ‎Waungwana وَؤُنْڠوَانَ‎Regions with significant populationsTanzania (particularly Zanzibar), Kenya,Mozambique, Saudi Arabia, Oman, Congo[1]Swahili Coastc. 1.2 million Tanzania996,000[2] Kenya56,074[3] Mozambique21,070[4] Comoros4,000[5]Diasporac. 0.8 million Saudi Arabia420,000[6] Madagascar113,000[5] Oman100,000[...

 

 

Este artigo ou secção necessita de referências de fontes secundárias fiáveis e independentes. Fontes primárias, ou com conflitos de interesse, não são adequadas para verbetes enciclopédicos. Ajude a incluir referências.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Novembro de 2020) Roma Roma de Fellini (PRT/BRA) Roma (filme de 1972) Itália / França1972 •  cor •  117 min  Género comédi...

American actress (1915-2005) Jane LawrenceBornJane Brotherton(1915-02-03)February 3, 1915Bozeman, MontanaDiedAugust 5, 2005(2005-08-05) (aged 90)New York City, New YorkOccupation(s)Stage, film actressSpouseTony SmithChildren3, including Kiki Smith and Seton Smith Jane Lawrence Smith (February 3, 1915 – August 5, 2005), born Jane Brotherton, was an American actress and opera singer who was part of the New York art scene beginning in the 1950s.[1] Life and work Jane Brotherto...

 

 

The Black CamelSutradara Hamilton MacFadden Produser Hamilton MacFadden Ditulis olehHugh Stanislaus Stange (adaptation)SkenarioBarry ConnersPhilip KleinDudley Nichols (tak disebutkan)BerdasarkanThe Black Camel olehEarl Derr BiggersPemeranWarner OlandSally EilersBela LugosiDorothy RevierSinematograferJoseph AugustDaniel B. ClarkPenyuntingAlfred DeGaetanoPerusahaanproduksiFox Film CorporationHamilton MacFaddenDistributorFox Film CorporationTanggal rilis 21 Juni 1931 (1931-06-21) Duras...

 

 

Hindu temple in Tamil Nadu, India This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Perur Pateeswarar Temple, Coimbatore – news · newspapers · books · scholar ...

Swimsuits based on or influenced by the bikini Since the bikini was introduced in 1946, it has generated a number of variations, often smaller and more revealing than the original. Many stylistic variations of the bikini have been created. A regular bikini is a two-piece swimsuit that together covers the wearer's crotch, buttocks, and breasts. Some bikini designs cover larger portions of the wearer's body while other designs provide minimal coverage. Topless variants are still sometimes consi...

 

 

Gearing-class destroyer Not to be confused with USS Johnston (DD-557). USS Johnston on 4 January 1980 History United States NameJohnston NamesakeJohn V. Johnston BuilderConsolidated Steel Corporation Laid down26 March 1945 Launched10 October 1945 Sponsored byMrs. Marie S. Klinger Commissioned23 August 1946 Decommissioned27 February 1981 Stricken27 February 1981 Identification Callsign: NAYK Hull number: DD-821 MottoWe'll Put It to a Venture FateTransferred to Republic of China, 27 February 19...

 

 

В Википедии есть статьи о других людях с фамилией Сёртис. Джон Сёртис Джон Сёртис в болиде Ferrari на Гран-при Великобритании Гражданство  Великобритания Дата рождения 11 февраля 1934(1934-02-11)[1] Место рождения Татсфилд[d], Суррей[2] Дата смерти 10 марта 2017(2017-03-10)[3][1&#...

Mountain range in New Territories, Hong Kong For other a list of mountains of Hong Kong named 'Kai Kung Shan', see Kai Kung Shan. Kai Kung Leng雞公嶺View of Kai Kung Leng, Lam Tsuen Country Park, HKHighest pointElevation585 m (1,919 ft)Hong Kong Principal Datum Coordinates22°27′50.63″N 114°5′7.98″E / 22.4640639°N 114.0855500°E GeographyKai Kung LengLam Tsuen Country Park,  Hong Kong Kai Kung Leng Kai Kung Leng (Chinese: 雞公嶺; lit. 'Rooste...

 

 

Rabiya receives the 1993 National Youth Award from the Prime Minister of India Narasimha RaoKariveppil Rabiya (born 1966) is a physically disabled social worker from Vellilakkadu, Malappuram, Kerala in India who rose to prominence through her role in the Kerala State Literacy Campaign in Malappuram district in 1990. Her efforts were recognized at a national level by the Government of India on multiple occasions. In 1994, the Ministry of Human Resource Development of the Government of India aw...

 

 

Natural satellites orbiting Pluto Top: Pluto's largest moon, Charon, with its dark Mordor Macula Middle: Hydra (left) and Nix (right) Bottom: Kerberos (left) and Styx (right) (Images not to scale) The dwarf planet Pluto has five natural satellites.[1] In order of distance from Pluto, they are Charon, Styx, Nix, Kerberos, and Hydra.[2] Charon, the largest, is mutually tidally locked with Pluto, and is massive enough that Pluto–Charon is sometimes considered a double dwarf pla...

American baseball player (born 1989) Baseball player Neil RamírezRamírez with the New York Mets in 2017High Point Rockers – No. 30PitcherBorn: (1989-05-25) May 25, 1989 (age 34)Virginia Beach, Virginia, U.S.Bats: RightThrows: RightMLB debutApril 25, 2014, for the Chicago CubsMLB statistics (through 2019 season)Win–loss record4–8Earned run average4.46Strikeouts211 Teams Chicago Cubs (2014–2016) Milwaukee Brewers (2016) Minnesota Twins (2016) San Francisco Giants (...

 

 

1942 novel by Agatha Christie For other uses, see The Moving Finger (disambiguation). The Moving Finger Dust-jacket illustration of the US (true first) edition. See Publication history (below) for UK first edition jacket image.AuthorAgatha ChristieCountryUnited KingdomLanguageEnglishGenreCrime novelPublisherDodd, Mead and CompanyPublication dateJuly 1942Media typePrint (hardback & paperback)Pages229 (first edition, hardcover)ISBN978-0-00-712084-0Preceded byFive Little Pigs ...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!