Special values of L-functions

In mathematics, the study of special values of L-functions is a subfield of number theory devoted to generalising formulae such as the Leibniz formula for π, namely

by the recognition that expression on the left-hand side is also where is the Dirichlet L-function for the field of Gaussian rational numbers. This formula is a special case of the analytic class number formula, and in those terms reads that the Gaussian field has class number 1. The factor on the right hand side of the formula corresponds to the fact that this field contains four roots of unity.

Conjectures

There are two families of conjectures, formulated for general classes of L-functions (the very general setting being for L-functions associated to Chow motives over number fields), the division into two reflecting the questions of:

  1. how to replace in the Leibniz formula by some other "transcendental" number (regardless of whether it is currently possible for transcendental number theory to provide a proof of the transcendence); and
  2. how to generalise the rational factor in the formula (class number divided by number of roots of unity) by some algebraic construction of a rational number that will represent the ratio of the L-function value to the "transcendental" factor.

Subsidiary explanations are given for the integer values of for which a formulae of this sort involving can be expected to hold.

The conjectures for (a) are called Beilinson's conjectures, for Alexander Beilinson.[1][2] The idea is to abstract from the regulator of a number field to some "higher regulator" (the Beilinson regulator), a determinant constructed on a real vector space that comes from algebraic K-theory.

The conjectures for (b) are called the Bloch–Kato conjectures for special values (for Spencer Bloch and Kazuya Kato; this circle of ideas is distinct from the Bloch–Kato conjecture of K-theory, extending the Milnor conjecture, a proof of which was announced in 2009). They are also called the Tamagawa number conjecture, a name arising via the Birch–Swinnerton-Dyer conjecture and its formulation as an elliptic curve analogue of the Tamagawa number problem for linear algebraic groups.[3] In a further extension, the equivariant Tamagawa number conjecture (ETNC) has been formulated, to consolidate the connection of these ideas with Iwasawa theory, and its so-called Main Conjecture.

Current status

All of these conjectures are known to be true only in special cases.

See also

Notes

References

  • Kings, Guido (2003), "The Bloch–Kato conjecture on special values of L-functions. A survey of known results", Journal de théorie des nombres de Bordeaux, 15 (1): 179–198, doi:10.5802/jtnb.396, ISSN 1246-7405, MR 2019010
  • "Beilinson conjectures", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • "K-functor in algebraic geometry", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Mathar, Richard J. (2010), "Table of Dirichlet L-Series and Prime Zeta Modulo Functions for small moduli", arXiv:1008.2547 [math.NT]

Read other articles:

Turkish billiards player In this Turkic name, the surname is Saygıner, sometimes transliterated as Sayginer. Semih SaygınerSemih Saygıner at the 2016 Verhoeven Open in New YorkBorn (1964-11-12) 12 November 1964 (age 58)Adapazarı, TurkeyNicknameMr. Magic Medal record Men's three-cushion billiards Representing  Turkey UMB World Championship 2003 Valladolid Individual 2003 Viersen Team 2004 Viersen Team 2006 Viersen Team 2016 Bordeaux Individual 2016 Viersen Team 2018 Cairo Individ...

 

European HorizonsOther nameEuHParent institutionEuropean CommissionEstablishedFebruary 2015FocusFuture of the European and Transatlantic AffairsExecutive DirectorLorenzo DonatelliKey peopleIrakli Bezhuashvili, Rachele MoscardoMembers1300+LocationGlobalWebsiteeuropeanhorizons.org European Horizons is a youth-led atlanticist policy incubator whose stated mission is “to foster a stronger transatlantic bond and a more united Europe,” which the organization sees as cornerstones of a future und...

 

  لمعانٍ أخرى، طالع الدولة الإسلامية (توضيح).   ميّز عن الدولة الإسلامية. تنظيم الدولة الإسلامية مشارك في العمليات العسكرية ضد داعش، الحرب الأهلية السورية العلم سنوات النشاط 2003 – الآن (أسماء مختلفة) الأيديولوجيا تكفيريةسلفية جهاديةقطبيةتوحيد الحاكميةوحدة إسلامي

1955年頃の琉球税関 那覇空港内の琉球税関 琉球税関(りゅうきゅうぜいかん)とは、琉球政府が設置した税関である。 1950年9月、琉球列島米国軍政府に設けられた「税関移民局(Customs Immigration)」が前身である。その後、琉球臨時中央政府に移管され「琉球税関」が成立した。琉球政府成立時に財政局の支分部局になった。 その後、機構改革の度に内政局→計画局→主...

 

ГородИхенхаузенIchenhausen Герб 48°22′ с. ш. 10°19′ в. д.HGЯO Страна  Германия Земля Бавария Район Гюнцбург (район) Глава Ханс Клемент(ХСС) История и география Площадь 34,22 км² Высота центра 489 м Часовой пояс UTC+1:00, летом UTC+2:00 Население Население 8391 человек (2010) Цифровые и

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2022) جوشوا بن معلومات شخصية الميلاد 25 نوفمبر 2000 (العمر 23 سنة)نابرفيل، إلينوي  الطول 5 قدم 11 بوصة (1.80 م) مركز اللعب وسط الجنسية الولايات المتحدة  المدرسة

Johanneskirche in Werl Die ehemalige evangelische Johanneskirche ist ein denkmalgeschütztes, profaniertes Kirchengebäude in Werl im nordrhein-westfälischen Kreis Soest in Deutschland. Geschichte und Architektur Die evangelischen Christen waren im 19. Jahrhundert in Werl eine Minderheit. Die Gemeinde nutzte für ihre Gottesdienste die Klosterkirche und die Kapelle auf der Gänsevöhde als Simultankirche. Das allerdings führte zu Aufruhr in der katholischen Bevölkerung. Bei einem Tumult in...

 

Пераледа-дель-СаусехоPeraleda del Zaucejo ПрапорМуніципалітетКраїна  ІспаніяАвтономна спільнота ЕстремадураПровінція БадахосКоординати 38°28′26″ пн. ш. 5°33′58″ зх. д. / 38.474° пн. ш. 5.566° зх. д. / 38.474; -5.566Координати: 38°28′26″ пн. ш. 5°33′58″ зх.&#...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Gangguan mental organik adalah gangguan jiwa yang berkaitan dengan faktor organik yang spesifik. Faktor ini berupa gangguan tubuh sistemik atau gangguan otak. Gejalanya dapat berbentuk gejala psikotik maupun non-psikotik. Penggolongan gangguan mental o...

آلان جرينسبان (بالإنجليزية: Alan Greenspan)‏  معلومات شخصية الميلاد 6 مارس 1926 (العمر 97 سنة) ممدينة نيويورك مواطنة الولايات المتحدة  عضو في الجمعية الأمريكية للفلسفة،  ومجموعة الثلاثين،  وحركة الموضوعية  الزوجة أندريا ميتشيل (1997–)  مناصب رئيس مجلس المحافظين للنظام ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2019) داء الرقص الهستيريائي معلومات عامة الاختصاص علم السموم  تعديل مصدري - تعديل   داء الرقص الهستيريائي[1] أو الرَقْوَصَة[2][3][4] هو نوع من الس

 

Mexican football club Not to be confused with Club de Fútbol Cobras. Football clubCobras de QuerétaroFull nameClub de Fútbol Cobras de QuerétaroNickname(s)Cobras, OfidiosFounded1980Dissolved1986LeagueSegunda División de México Home colours Away colours The Club de Fútbol Cobras de Querétaro was a Mexican football team based in the city of Querétaro City, Querétaro. History Cobras was founded on 12 May 1980 as Cobras Querétaro, which was owned by television company Televisa. In 1985...

Argentine basketball player Marcos DelíaDelía with Argentina, in 2015.Personal informationBorn (1992-04-08) April 8, 1992 (age 31)Saladillo, ArgentinaNationalityArgentine / ItalianListed height2.08 m (6 ft 10 in)Listed weight111 kg (245 lb)Career informationNBA draft2014: undraftedPlaying career2010–presentPositionCenterCareer history2010–2014Boca Juniors2014–2016Obras Sanitarias2016–2019Murcia2019Joventut2019Fuerza Regia de Monterrey2019–2020Virtus B...

 

Barnabé Visconti Barnabé Visconti Senhor de Milão Reinado 1349–1385 Predecessor Cardeal João Visconti, Arcebispo de Milão Sucessor João Galeácio Visconti   Nascimento 1323 (700 anos)   Milão Morte 18 de dezembro de 1385 (62 anos)   Milão Sepultado em Catedral de Milão Cônjuge Beatriz Regina de Scala Casa Casa de Visconti Pai Estêvão Visconti Mãe Valentina Doria Barnabé Visconti (em italiano Bernabò ou Barnabò Visconti; Milão, 1323 — Mil...

 

Principle of treating others as one wants to be treated Not to be confused with Golden Law, Golden ratio, Golden mean (philosophy), or Golden Act. For other uses, see Golden Rule (disambiguation). Do Unto Others redirects here. For the 1915 silent film, see Do Unto Others (film). Golden Rule Sign that hung above the door of the employees' entrance to the Acme Sucker Rod Factory in Toledo, Ohio, 1913. The Golden Rule is the principle of treating others as one would want to be treated by them. ...

American basketball player (1941–2016) Nate ThurmondThurmond with the Warriors in 1969Personal informationBorn(1941-07-25)July 25, 1941Akron, Ohio, U.S.DiedJuly 16, 2016(2016-07-16) (aged 74)San Francisco, California, U.S.Listed height6 ft 11 in (2.11 m)Listed weight225 lb (102 kg)Career informationHigh schoolCentral (Akron, Ohio)CollegeBowling Green (1960–1963)NBA draft1963: 1st round, 3rd overall pickSelected by the San Francisco WarriorsPlaying career1963...

 

イギリスの政治家ウィリアム・ピットWilliam Pitt ウィリアム・ピット(小ピット)生年月日 (1759-05-28) 1759年5月28日出生地 グレートブリテン王国 ケント州ヘイズプレイス没年月日 (1806-01-23) 1806年1月23日(46歳没)死没地 イギリス ロンドン出身校 ケンブリッジ大学所属政党 トーリー党親族 チャタム伯ウィリアム・ピット(父)ヘスター・グレンヴィル(母)ジョン・ピッ...

 

American baseball player (born 1995) Baseball player C. D. PelhamPelham at the 2018 All-Star Futures GameFree agent Relief pitcherBorn: (1995-02-21) February 21, 1995 (age 28)Lancaster, South Carolina, U.S.Bats: RightThrows: LeftMLB debutSeptember 5, 2018, for the Texas RangersMLB statistics (through 2018 Season)Win–loss record0–0Earned run average7.04Strikeouts7 Teams Texas Rangers (2018) Christian Devont'a Pelham (born February 21, 1995) is an American professional b...

1937 film PremiereDirected byGéza von BolváryWritten byFriedrich DammannHanns SchachnerMax WallnerProduced byFranz HoffermannWalter W. TrinksStarringZarah LeanderAttila HörbigerKarl MartellTheo LingenCinematographyFranz PlanerEdited byHermann HallerMusic byWilly Schmidt-GentnerProductioncompanyGloria-FilmDistributed byTobis-Sascha FilmRelease date 5 February 1937 (1937-02-05) Running time82 minutesCountryAustriaLanguageGerman Premiere is a 1937 Austrian musical crime film di...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hannah Nichols – news · newspapers · books · scholar · JSTOR (April 2022) (Learn how and when to remove thi...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!