Main conjecture of Iwasawa theory

Main conjecture of Iwasawa theory
FieldAlgebraic number theory
Iwasawa theory
Conjectured byKenkichi Iwasawa
Conjectured in1969
First proof byBarry Mazur
Andrew Wiles
First proof in1984

In mathematics, the main conjecture of Iwasawa theory is a deep relationship between p-adic L-functions and ideal class groups of cyclotomic fields, proved by Kenkichi Iwasawa for primes satisfying the Kummer–Vandiver conjecture and proved for all primes by Mazur and Wiles (1984). The Herbrand–Ribet theorem and the Gras conjecture are both easy consequences of the main conjecture. There are several generalizations of the main conjecture, to totally real fields,[1] CM fields, elliptic curves, and so on.

Motivation

Iwasawa (1969a) was partly motivated by an analogy with Weil's description of the zeta function of an algebraic curve over a finite field in terms of eigenvalues of the Frobenius endomorphism on its Jacobian variety. In this analogy,

  • The action of the Frobenius corresponds to the action of the group Γ.
  • The Jacobian of a curve corresponds to a module X over Γ defined in terms of ideal class groups.
  • The zeta function of a curve over a finite field corresponds to a p-adic L-function.
  • Weil's theorem relating the eigenvalues of Frobenius to the zeros of the zeta function of the curve corresponds to Iwasawa's main conjecture relating the action of the Iwasawa algebra on X to zeros of the p-adic zeta function.

History

The main conjecture of Iwasawa theory was formulated as an assertion that two methods of defining p-adic L-functions (by module theory, by interpolation) should coincide, as far as that was well-defined. This was proved by Mazur & Wiles (1984) for Q, and for all totally real number fields by Wiles (1990). These proofs were modeled upon Ken Ribet's proof of the converse to Herbrand's theorem (the Herbrand–Ribet theorem).

Karl Rubin found a more elementary proof of the Mazur–Wiles theorem by using Thaine's method and Kolyvagin's Euler systems, described in Lang (1990) and Washington (1997), and later proved other generalizations of the main conjecture for imaginary quadratic fields.[2]

In 2014, Christopher Skinner and Eric Urban proved several cases of the main conjectures for a large class of modular forms.[3] As a consequence, for a modular elliptic curve over the rational numbers, they prove that the vanishing of the Hasse–Weil L-function L(Es) of E at s = 1 implies that the p-adic Selmer group of E is infinite. Combined with theorems of Gross-Zagier and Kolyvagin, this gave a conditional proof (on the Tate–Shafarevich conjecture) of the conjecture that E has infinitely many rational points if and only if L(E, 1) = 0, a (weak) form of the Birch–Swinnerton-Dyer conjecture. These results were used by Manjul Bhargava, Skinner, and Wei Zhang to prove that a positive proportion of elliptic curves satisfy the Birch–Swinnerton-Dyer conjecture.[4][5]

Statement

  • p is a prime number.
  • Fn is the field Q(ζ) where ζ is a root of unity of order pn+1.
  • Γ is the largest subgroup of the absolute Galois group of F isomorphic to the p-adic integers.
  • γ is a topological generator of Γ
  • Ln is the p-Hilbert class field of Fn.
  • Hn is the Galois group Gal(Ln/Fn), isomorphic to the subgroup of elements of the ideal class group of Fn whose order is a power of p.
  • H is the inverse limit of the Galois groups Hn.
  • V is the vector space HZpQp.
  • ω is the Teichmüller character.
  • Vi is the ωi eigenspace of V.
  • hpi,T) is the characteristic polynomial of γ acting on the vector space Vi
  • Lp is the p-adic L function with Lpi,1–k) = –Bkik)/k, where B is a generalized Bernoulli number.
  • u is the unique p-adic number satisfying γ(ζ) = ζu for all p-power roots of unity ζ
  • Gp is the power series with Gpi,us–1) = Lpi,s)

The main conjecture of Iwasawa theory proved by Mazur and Wiles states that if i is an odd integer not congruent to 1 mod p–1 then the ideals of generated by hpi,T) and Gp1–i,T) are equal.

Notes

Sources

  • Baker, Matt (2014-03-10), "The BSD conjecture is true for most elliptic curves", Matt Baker's Math Blog, retrieved 2019-02-24
  • Bhargava, Manjul; Skinner, Christopher; Zhang, Wei (2014-07-07), "A majority of elliptic curves over $\mathbb Q$ satisfy the Birch and Swinnerton-Dyer conjecture", arXiv:1407.1826 [math.NT]
  • Coates, John; Sujatha, R. (2006), Cyclotomic Fields and Zeta Values, Springer Monographs in Mathematics, Springer-Verlag, ISBN 978-3-540-33068-4, Zbl 1100.11002
  • Iwasawa, Kenkichi (1964), "On some modules in the theory of cyclotomic fields", Journal of the Mathematical Society of Japan, 16: 42–82, doi:10.2969/jmsj/01610042, ISSN 0025-5645, MR 0215811
  • Iwasawa, Kenkichi (1969a), "Analogies between number fields and function fields", Some Recent Advances in the Basic Sciences, Vol. 2 (Proc. Annual Sci. Conf., Belfer Grad. School Sci., Yeshiva Univ., New York, 1965-1966), Belfer Graduate School of Science, Yeshiva Univ., New York, pp. 203–208, MR 0255510
  • Iwasawa, Kenkichi (1969b), "On p-adic L-functions", Annals of Mathematics, Second Series, 89 (1): 198–205, doi:10.2307/1970817, ISSN 0003-486X, JSTOR 1970817, MR 0269627
  • Kakde, Mahesh (2013), "The main conjecture of Iwasawa theory for totally real fields", Inventiones Mathematicae, 193 (3): 539–626, arXiv:1008.0142, doi:10.1007/s00222-012-0436-x, MR 3091976
  • Lang, Serge (1990), Cyclotomic fields I and II, Graduate Texts in Mathematics, vol. 121, With an appendix by Karl Rubin (Combined 2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-96671-7, Zbl 0704.11038
  • Manin, Yu I.; Panchishkin, A. A. (2007), Introduction to Modern Number Theory, Encyclopaedia of Mathematical Sciences, vol. 49 (Second ed.), ISBN 978-3-540-20364-3, ISSN 0938-0396, Zbl 1079.11002
  • Mazur, Barry; Wiles, Andrew (1984), "Class fields of abelian extensions of Q", Inventiones Mathematicae, 76 (2): 179–330, doi:10.1007/BF01388599, ISSN 0020-9910, MR 0742853, S2CID 122576427
  • Skinner, Christopher; Urban, Eric (2014), "The Iwasawa main conjectures for GL2", Inventiones Mathematicae, 195 (1): 1–277, CiteSeerX 10.1.1.363.2008, doi:10.1007/s00222-013-0448-1, MR 3148103, S2CID 120848645
  • Washington, Lawrence C. (1997), Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-94762-4
  • Wiles, Andrew (1990), "The Iwasawa conjecture for totally real fields", Annals of Mathematics, Second Series, 131 (3): 493–540, doi:10.2307/1971468, ISSN 0003-486X, JSTOR 1971468, MR 1053488

Read other articles:

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2023) (Learn how and when to remove this template message) Erich BrandenbergerErich Brandenberger (left) with Erich von Manstein, 1941Born(1892-07-15)15 July 1892Augsburg, German EmpireDied21 June 1955(1955-06-21) (aged 62)Bonn, West GermanyAllegiance German Empire (to 1918) Weimar Republ...

 

Igreja de São Francisco de Paula Igreja de São Francisco de Paula (Rio de Janeiro) Tipo igreja Inauguração 1865 (158 anos) Página oficial (Website) Geografia Coordenadas 22° 54' 19.775 S 43° 10' 50.138 O Localização Rio de Janeiro, Centro - Brasil Patrimônio Património de Influência Portuguesa (base de dados), bem tombado pelo IPHAN [edite no Wikidata] A Igreja de São Francisco de Paula é um templo católico localizado no Largo de São Francisco de P...

 

سفارة النرويج في أذربيجان النرويج أذربيجان الإحداثيات 40°22′27″N 49°50′42″E / 40.37423°N 49.84494°E / 40.37423; 49.84494  البلد أذربيجان  المكان باكو تعديل مصدري - تعديل   سفارة النرويج في أذربيجان هي أرفع تمثيل دبلوماسي[1] لدولة النرويج لدى أذربيجان.[2][3] تقع السفا

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها...

 

  لمعانٍ أخرى، طالع جون تايلور (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) جون تايلور معلومات شخصية الميلاد 2 ديسمبر 1930  ملبورن  الوفاة 18 مايو 2011 (80 سنة)   كانبرا  مواطنة أستراليا...

 

أُمامة بنت أبي العَاص أمامة بنت أبي العاص بن الربيع بن عبد العزى بن عبد شمس بْن عبد مناف تخطيط أمامة بنت أبي العاص بن الربيع معلومات شخصية مكان الميلاد مكة المكرمة  الوفاة سنة 686  جدة  الزوج علي بن أبي طالبالمغيرة بن نوفل  الأولاد محمد الأوسط بن علي  الأب أبو العا...

Basketball variant played on half of a regulation court 3x3 basketballHighest governing bodyFIBACharacteristicsContactYesTeam members4 (3 on court)Mixed-sexSingle or mixedTypeIndoor or outdoorEquipmentBasketballPresenceOlympicYouth Olympic Games since 2010European Gamessince 2015Olympic Gamessince 2020Commonwealth Games from 2022 3x3 basketball (pronounced three-ex-three)[1] is a variation of basketball played three-a-side, with one backboard and in a half-court setup. According ...

 

1999 San Francisco mayoral election ← 1995 November 2, 1999 (1999-11-02)December 14, 1999 (1999-12-14) 2003 → Turnout42.96% 2.56 pp (first-round)[1][2][3] 48.84% 5.88 pp (runoff)[1][4]   Candidate Willie Brown Tom Ammiano Party Democratic Democratic First round vote 75,732 49,384 First round percentage 38.90% 25.37% Runoff vote 131,983 89,428 Runoff percentage 59.61% 40.39%   Candidate Frank ...

 

Emir of Kuwait from 1965 to 1977 Sabah Al-Salim Al-Sabahصباح السالم الصباح2nd Emir of KuwaitReign24 November 1965 – 31 December 1977State of KuwaitPredecessorAbdullah Al-Salim Al-SabahSuccessorJaber Al-Ahmad Al-SabahBorn(1913-04-12)12 April 1913Kuwait City, Sheikhdom of KuwaitDied31 December 1977(1977-12-31) (aged 64)Kuwait City, KuwaitIssueAli Sabah Al-Salem Al-SabahSalem Sabah Al-Salem Al-SabahMohammad Sabah Al-Salem Al-Sabah AhmadHussa Sabah Al-Salem Al-SabahHouseSab...

Theatre in Loon op Zand, The Netherlands Theater Efteling (or Efteling Theatre in English) is a theatre in the amusement park Efteling in the Netherlands. It was designed by Ton van de Ven and opened its doors in 2002. History and details Front of the theatre Theater de Efteling is one of the five big theatres in the Netherlands. Designed by van de Ven, it matches the typical Efteling style. The surroundings consist of old Dutch warehouses. In addition to the theatre facilities, the building ...

 

Tunbridge Wells Half Marathon2010 Finishers MedalDateFebruaryLocationTunbridge Wells, United KingdomEvent typeRoadDistanceHalf MarathonEstablished1983Course records1:04:15Official site[1] The Tunbridge Wells Half Marathon is a half marathon road running event that takes place in Tunbridge Wells every February. It is organised by the Tunbridge Wells Harriers running club. The first Tunbridge Wells Half Marathon was staged in 1983, with just 53 runners.[1] The race came in at number 38 ...

 

Place in Rhineland-Palatinate, Germany Town in Rhineland-Palatinate, GermanyBad Bergzabern Town Coat of armsLocation of Bad Bergzabern within Südliche Weinstraße district Bad Bergzabern Show map of GermanyBad Bergzabern Show map of Rhineland-PalatinateCoordinates: 49°06′10″N 7°59′57″E / 49.10280°N 7.99913°E / 49.10280; 7.99913CountryGermanyStateRhineland-PalatinateDistrictSüdliche Weinstraße Municipal assoc.Bad BergzabernGovernment • Mayor (...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Sixth Wife – news · newspapers · books · scholar · JSTOR (November 2008) (Learn how and when to remove this template message) First edition (publ. Robert Hale) The Sixth Wife is a 1953 historical novel by noted novelist Jean Plaidy. It recounts the tale of ...

 

Food Restaurant/Company This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (July 2021) The Chop Bar is a Ghanaian food centre that serves local cuisines in a contemporary dining setting. It was founded by Elias Hage and Mona Quartey El Halabi in 2015[1] Service It currently has two branches, located at the Achimota Retail Centre and A&C Mall in Accra.[2][3] D...

 

Takalar pada Pekan Olahraga Provinsi Sulawesi Selatan 2022 Jumlah atlet TBD di TBD cabang olahraga Pembawa bendera TBD Total medali Emas4 Perak8 Perunggu7 19 (Urutan ke-19 ) Kontingen Takalar berkompetisi pada Pekan Olahraga Provinsi Sulawesi Selatan 2022 di Sinjai dan Bulukumba, Sulawesi Selatan pada 22 sampai 30 Oktober 2022. Kontingen ini menempati posisi ke-19 pada tabel klasemen perolehan medali Porprov Sulsel XVII/2022 setelah meraih total medali 19 dengan rincian 4 medali emas, 8 ...

Method by which work is assigned This article is about scheduling in general. For networks, see Network scheduler. For other uses, see Scheduling (disambiguation). In computing, scheduling is the action of assigning resources to perform tasks. The resources may be processors, network links or expansion cards. The tasks may be threads, processes or data flows. The scheduling activity is carried out by a process called scheduler. Schedulers are often designed so as to keep all computer resource...

 

Japanese marathon runner Mizuki Noguchi Medal record Women's athletics Representing  Japan Olympic Games 2004 Athens Marathon World Championships 2003 Paris Marathon Mizuki Noguchi (野口 みずき, Noguchi Mizuki, born July 3, 1978) is a Japanese professional long-distance runner who specialises in the marathon event. She is an Olympic champion over the distance. Initially starting out as a track and cross country athlete, her first major success was becoming the Asian cross country ch...

 

Internet radio station at Georgetown University This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: WGTB – news · newspapers · books · scholar · JSTOR (July 2022) (Learn how and when to remove this template message) For the LPTV station in Charlotte, NC, see WGTB-CD. WGTB is a student-run internet radio station ...

EWTN (Eternal Word Television Network) is een katholieke Amerikaanse radio- en televisiezender. Deze zender is wereldwijd te ontvangen via satelliet (Sirius), kortegolfradio en het internet. EWTN werd in 1981 opgericht onder impuls van Moeder Angelica (1923-2016), een zuster van de clarissen. Programma's Mother Angelica Live Daily Mass Life on the Rock with Fr. Francis Mary, MFVA EWTN Live with Fr. Mitch Pacwa SJ The Journey Home with Marcus Grodi The World Over with Raymond Arroyo - News Web...

 

History and regulations of Polish citizenship This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Polish nationality law – news · newspapers · books · scholar · JSTOR (August 2012) (Learn how and when to remove this template message) Polish Citizenship ActParliament of Poland Long title An Act relating to Polish...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!