Patterson was born in Belfast and grew up in the east of the city, attending Grosvenor High School. He went to Clare College, Cambridge, in 1967, and received his BA in mathematics in 1970, and his Ph.D. (completed in 1974, awarded in 1975) on "The limit set of a Fuchsian group" under Alan Beardon.[4] He spent 1974–1975 at Göttingen, 1975–1979 he was back at Cambridge, and 1979–1981 he was at Harvard as Benjamin Pierce Lecturer. From 1981 to his retirement in 2011 he was professor of mathematics at Göttingen.
His 18 PhD students include Jörg Brüdern and Bernd Otto Stratmann.[1]
He proposed a new conjecture[13] which was based on insights from his determination of the coefficients of the cuspidal Fourier expansions of the metaplectic cubic theta function.[14][15] This revised conjecture remained open until 2021, when it was finally proved by Alexander Dunn and Maksym Radziwiłł at Caltech.[16][17]
In 1976 Patterson introduced what later became known as the Patterson-Sullivan measure.[4] The concept was further developed and extended by Dennis Sullivan starting in 1979.[18] It has proved to be a useful tool in studying Fuchsian and Kleinian groups (and certain generalizations) and their limit sets.[19][20]
History of mathematics
Patterson is also interested in the history of mathematics. For example, together with Ralf Meyer, he contributed an updated introduction to a new edition of a classic textbook by Hermann Weyl,[21] and an introduction to the classic textbook of Whittaker and Watson.[22] He has collaborated with Norbert Schappacher on elucidating the biography of Kurt Heegner.
To mark his 60th birthday friends and colleagues in Göttingen organized a three day conference to celebrate his life in July, 2009.[21] Speakers at this gathering included Daniel Bump, Dorian Goldfeld,
David Kazhdan, and Andrew Ranicki.[27] A commemorative volume, Contributions in Analytic and Algebraic Number Theory (Springer 2012), edited by Valentin Blomer & Preda Mihăilescu, collecting articles related to or developed at the conference, was issued as a Festschrift for him.[28]
Patterson, S. J. (1989). "The Selberg zeta-function of a Kleinian group". Number theory, trace formulas and discrete groups. Symposium in Honor of Atle Selberg, Oslo/Norway 1987. pp. 409–441. doi:10.1016/B978-0-12-067570-8.50031-7.
Patterson, S. J.; Perry, Peter A. (2001). "The divisor of Selberg's zeta function for Kleinian groups". Duke Mathematical Journal. 106 (2): 321–390. doi:10.1215/S0012-7094-01-10624-8.
^Patterson, S. J. (1989). "The Selberg zeta-function of a Kleinian group". Number theory, trace formulas and discrete groups. Symposium in Honor of Atle Selberg, Oslo/Norway 1987. pp. 409–441. doi:10.1016/B978-0-12-067570-8.50031-7.
^Patterson, S. J.; Perry, Peter A. (2001). "The divisor of Selberg's zeta function for Kleinian groups". Duke Mathematical Journal. 106 (2): 321–390. doi:10.1215/S0012-7094-01-10624-8.
^Festschrift for S. J. Patterson The text that comprises this volume is a collection of surveys and original works from experts in the fields of algebraic number theory, analytic number theory, harmonic analysis, and hyperbolic geometry. A portion of the collected contributions have been developed from lectures given at the "International Conference on the Occasion of the 60th Birthday of S. J. Patterson"