Metaplectic group

In mathematics, the metaplectic group Mp2n is a double cover of the symplectic group Sp2n. It can be defined over either real or p-adic numbers. The construction covers more generally the case of an arbitrary local or finite field, and even the ring of adeles.

The metaplectic group has a particularly significant infinite-dimensional linear representation, the Weil representation.[1] It was used by André Weil to give a representation-theoretic interpretation of theta functions, and is important in the theory of modular forms of half-integral weight and the theta correspondence.

Definition

The fundamental group of the symplectic Lie group Sp2n(R) is infinite cyclic, so it has a unique connected double cover, which is denoted Mp2n(R) and called the metaplectic group.

The metaplectic group Mp2(R) is not a matrix group: it has no faithful finite-dimensional representations. Therefore, the question of its explicit realization is nontrivial. It has faithful irreducible infinite-dimensional representations, such as the Weil representation described below.

It can be proved that if F is any local field other than C, then the symplectic group Sp2n(F) admits a unique perfect central extension with the kernel Z/2Z, the cyclic group of order 2, which is called the metaplectic group over F. It serves as an algebraic replacement of the topological notion of a 2-fold cover used when F = R. The approach through the notion of central extension is useful even in the case of real metaplectic group, because it allows a description of the group operation via a certain cocycle.

Explicit construction for n = 1

In the case n = 1, the symplectic group coincides with the special linear group SL2(R). This group biholomorphically acts on the complex upper half-plane by fractional-linear transformations, such as the Möbius transformation,

where

is a real 2-by-2 matrix with the unit determinant and z is in the upper half-plane, and this action can be used to explicitly construct the metaplectic cover of SL2(R).

The elements of the metaplectic group Mp2(R) are the pairs (g, ε), where and ε is a holomorphic function on the upper half-plane such that . The multiplication law is defined by:

where

That this product is well-defined follows from the cocycle relation . The map

is a surjection from Mp2(R) to SL2(R) which does not admit a continuous section. Hence, we have constructed a non-trivial 2-fold cover of the latter group.

Construction of the Weil representation

The existence of the Weil representation can be proven abstractly, as follows. The Heisenberg group has an irreducible unitary representation on a Hilbert space , that is,

with the center acting as multiplication by a given nonzero constant. The Stone–von Neumann theorem states that this representation is essentially unique: if is another such representation, there exists an automorphism

such that .

and the conjugating automorphism is unique up to multiplication by a constant of modulus 1. So any automorphism of the Heisenberg group that induces the identity on the center acts on this representation —more precisely, the action is only well-defined up to multiplication by a nonzero constant.

The automorphisms of the Heisenberg group (fixing its center) form the symplectic group, so an action of these automorphisms is equivalent to an action of the symplectic group. But the action above is only defined up to multiplication by a nonzero constant, so an automorphism of the group is mapped to an equivalence class of multiples of . This is a projective representation, a homomorphism from the symplectic group to the projective unitary group of . The general theory of projective representations gives an action of some central extension of the symplectic group on . This central extension can be taken to be a double cover, which is the metaplectic group.

Concretely, in the case of Mp2(R), the Hilbert space is L2(R), the square-integrable functions on the reals. The Heisenberg group is generated by translations and by multiplication by the functions eixy of x, for y real. The action of the metaplectic group on —the Weil representation—is generated by the Fourier transform and multiplication by the functions exp(ix2y) of x, for y real.

Generalizations

Weil showed how to extend the theory above by replacing by any locally compact abelian group G, which by Pontryagin duality is isomorphic to its dual (the group of characters). The Hilbert space H is then the space of all L2 functions on G. The (analogue of) the Heisenberg group is generated by translations by elements of G, and multiplication by elements of the dual group (considered as functions from G to the unit circle). There is an analogue of the symplectic group acting on the Heisenberg group, and this action lifts to a projective representation on H. The corresponding central extension of the symplectic group is called the metaplectic group.

Some important examples of this construction are given by:

  • G is a vector space over the reals of dimension n. This gives a metaplectic group that is a double cover of the symplectic group Sp2n(R).
  • More generally G can be a vector space over any local field F of dimension n. This gives a metaplectic group that is a double cover of the symplectic group Sp2n(F).
  • G is a vector space over the adeles of a number field (or global field). This case is used in the representation-theoretic approach to automorphic forms.
  • G is a finite group. The corresponding metaplectic group is then also finite, and the central cover is trivial. This case is used in the theory of theta functions of lattices, where typically G will be the discriminant group of an even lattice.
  • A modern point of view on the existence of the linear (not projective) Weil representation over a finite field, namely, that it admits a canonical Hilbert space realization, was proposed by David Kazhdan. Using the notion of canonical intertwining operators suggested by Joseph Bernstein, such a realization was constructed by Gurevich-Hadani.[2]

See also

Notes

  1. ^ Weil, A. (1964). "Sur certains groupes d'opérateurs unitaires". Acta Math. 111: 143–211. doi:10.1007/BF02391012.
  2. ^ Gurevich, Shamgar; Hadani, Ronny (31 May 2007). "Quantization of symplectic vector spaces over finite fields". arXiv:0705.4556 [math.RT].

References

  • Howe, Roger; Tan, Eng-Chye (1992), Nonabelian harmonic analysis. Applications of SL(2,R), Universitext, New York: Springer-Verlag, ISBN 978-0-387-97768-3
  • Lion, Gerard; Vergne, Michele (1980), The Weil representation, Maslov index and theta series, Progress in Mathematics, vol. 6, Boston: Birkhäuser
  • Weil, André (1964), "Sur certains groupes d'opérateurs unitaires", Acta Math., 111: 143–211, doi:10.1007/BF02391012
  • Gurevich, Shamgar; Hadani, Ronny (2006), "The geometric Weil representation", Selecta Mathematica, New Series, arXiv:math/0610818, Bibcode:2006math.....10818G
  • Gurevich, Shamgar; Hadani, Ronny (2005), Canonical quantization of symplectic vector spaces over finite fields, arXiv:0705.4556

Read other articles:

Pala Alpitour Innenansicht während der Olympischen Spiele 2006 Frühere Namen Palasport Olimpico (2005–2014) Daten Ort Corso Sebastopoli 123Italien 10134 Turin, Italien Koordinaten 45° 2′ 30″ N, 7° 39′ 8″ O45.0416677.652222Koordinaten: 45° 2′ 30″ N, 7° 39′ 8″ O Eigentümer Stadt Turin Eröffnung 13. Dezember 2005 Oberfläche BetonParkettEisfläche Kosten 90 Mio. Euro Architekt Arata IsozakiPier Paolo MaggioraMa...

 

سلسلة مقالات عناليهود واليهودية أصل الكلمة من هو اليهودي؟ الثقافة يهود الدين الله في اليهودية (أسماء) مبدئ الإيمان ميتزفة (613) هالاخاه السبت الأعياد الصلاة الصدقة أرض إسرائيل بريت بار متسفا الزواج الثكل فلاسفة أخلاقيات قبالة مينهاج كنيس حاخام نصوص تناخ (التوراةأسفار الأنب...

 

American football player and sprinter (1942–2003) American football player Bob HayesNo. 22Position:Split endPersonal informationBorn:(1942-12-20)December 20, 1942Jacksonville, Florida, U.S.Died:September 18, 2002(2002-09-18) (aged 59)Jacksonville, Florida, U.S.Height:5 ft 11 in (1.80 m)Weight:185 lb (84 kg)Career informationHigh school:Matthew Gilbert (Jacksonville)College:Florida A&MNFL Draft:1964 / Round: 7 / Pick: 88AFL Draft:1964...

Book by Roy Gutman & David Rieff Crimes of War: What the Public Should Know AuthorRoy Gutman, David RieffCountryUnited StatesLanguageEnglishSubjectHuman RightsGenreNon-fictionPublisherW. W. Norton & CompanyPublication dateJuly 12, 1999; revised (2.0) 2007Media typePrint (Hardback & Paperback)Pages352 ppISBN0-393-04746-6 (Hardback)ISBN 0-393-31914-8 (Paperback)ISBN 0-393-32846-5 (2.0, 2007)OCLC40499774Dewey Decimal341.6/9 21LC ClassK5301 .C75 1999 Crimes of War:...

 

Protein-coding gene in the species Homo sapiens NR4A2Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes1OVLIdentifiersAliasesNR4A2, HZF-3, NOT, NURR1, RNR1, TINUR, nuclear receptor subfamily 4 group A member 2External IDsOMIM: 601828 MGI: 1352456 HomoloGene: 4509 GeneCards: NR4A2 Gene location (Human)Chr.Chromosome 2 (human)[1]Band2q24.1Start156,324,437 bp[1]End156,342,348 bp[1]Gene location (Mouse)Chr.Chromosome 2 (mouse)[2]Band2 C1.1|...

 

Shopping mall in New South Wales, AustraliaChatswood InterchangeView of Chatswood Interchange from Chatswood MallLocationChatswood, New South Wales, AustraliaCoordinates33°47′50″S 151°10′55″E / 33.797140°S 151.181982°E / -33.797140; 151.181982Address436 Victoria Ave, Chatswood NSW 2067Opening date1988; 35 years ago (1988) (original)2014; 9 years ago (2014) (new)OwnerGalileo GroupNo. of stores and services70No. of anchor t...

This article is about the University of Wisconsin–Whitewater facility. For the unincorporated community in Ohio, see Williams Center, Ohio. For the Tulsa skyscraper formerly known as One Williams Center, see BOK Tower. The Williams Center is a facility for intramural and recreational sports at the University of Wisconsin–Whitewater.[1] Uses The college used the center to welcome the UW-W football team when it won the 2010 Division III national championship.[2] The ...

 

U.S. dish of breaded and fried chicken meat Chicken fingersAlternative namesChicken tenders, chicken strips, chicken fillets, chicken goujonsCourseAppetizer, main coursePlace of originManchester, New Hampshire, United StatesServing temperatureHotMain ingredientsChicken, breading  Media: Chicken fingers Chicken fingers from Dairy Queen, usually served with french fries and sauce of choice Chicken fingers (also known as chicken goujons, chicken strips, chicken tenders, chicken nuggets ...

 

Lokasi Kabupaten Maluku Barat Daya di Provinsi Maluku Berikut ini adalah daftar kecamatan, kelurahan, dan desa di Kabupaten Maluku Barat Daya, Provinsi Maluku, Indonesia. Kabupaten Maluku Barat Daya terdiri atas 17 kecamatan, 1 kelurahan, dan 117 desa dengan luas wilayah 4.581,06 km² dan jumlah penduduk 66.805 jiwa (2017). Kode Wilayah Kabupaten Maluku Barat Daya adalah 81.07.[1][2][3][4] Kode Wilayah Nama Kecamatan Ibu kota Jumlah Daftar Kelurahan dan Desa Ke...

1916 film directed by Hugh Ford The Woman in the CaseFilm still of Alan Hale and Pauline FrederickDirected byHugh FordMartyn Keith (ass't director)Written byDoty Hobart (adaptation)Based onThe Woman in the Caseby Clyde FitchProduced byAdolph ZukorStarringPauline FrederickAlan HaleCinematographyNed Van BurenDistributed byParamount PicturesRelease date August 6, 1916 (1916-08-06) Running time50 minutesCountryUnited StatesLanguageSilent (English intertitles) The Woman in the Case ...

 

American film by Stephen Williams ChevalierTheatrical release posterDirected byStephen WilliamsScreenplay byStefani RobinsonProduced by Ed Guiney Andrew Lowe Stefani Robinson Dianne McGunigle Starring Kelvin Harrison Jr. Samara Weaving Lucy Boynton Marton Csokas Alex Fitzalan Minnie Driver Ronkẹ Adékoluẹjo CinematographyJess HallEdited byJohn AxelradMusic byKris BowersProductioncompanies Element Pictures TSG Entertainment Distributed bySearchlight PicturesRelease dates September 11,...

 

1937–1938 puppet government in Japanese-occupied Shanghai Great Way Municipal Government of Shanghai上海市大道政府 Pinyin: Shànghǎi Shì Dàdào Zhèngfǔ Japanese: Shanhai Shi Daidō Seifu1937–1938 FlagStatusPuppet regime of the Empire of JapanCapitalPudongCommon languagesMandarin ChineseJapaneseGovernmentMunicipal governmentChairman • 1937–1938 Su Xiwen [zh] Historical eraSecond Sino-Japanese War• Established 5 December 1937• Disest...

Simple light plough without a mouldboard Single-handled bow ard: (1) yoke, (2) draft-pole, (3) draft-beam, (4) stilt, (5) share Score marks (ard marks) from a rip ard on a boulder in a clearance cairn. The ard, ard plough,[1] or scratch plough[2] is a simple light plough without a mouldboard. It is symmetrical on either side of its line of draft and is fitted with a symmetrical share that traces a shallow furrow but does not invert the soil. It began to be replaced in China by...

 

Koordinat: 8°26′06″S 114°19′02″E / 8.4351°S 114.3173°E / -8.4351; 114.3173 MuncarKecamatanKantor Camat MuncarPeta lokasi Kecamatan MuncarNegara IndonesiaProvinsiJawa TimurKabupatenBanyuwangiPemerintahan • Camat-Populasi • Total−139.070 jiwaKode Kemendagri35.10.05 Kode BPS3510050 Desa/kelurahan10 Muncar adalah sebuah kecamatan di Kabupaten Banyuwangi, Provinsi Jawa Timur, Indonesia. Di kecamatan Muncar ini terdapat pelabuhan ik...

 

República polaco-lituana-rutena (1658). El Tratado de Hádiach (polaco: ugoda hadziacka) fue un tratado firmado el 16 de septiembre de 1658,[1]​[2]​ en Hádiach (Hadziacz, Hadiacz, Гáдяч) entre Polonia-Lituania, representada por S. Bieniewski y K. Jewłaszewski, y el Hetmanato cosaco representado por el hetman Iván Vigovski, el starshiná (sztarszna, el mayor) Yuri Nemýrych, artífice del tratado,[3]​ y Pavló Teteria. El documento, que nunca llegó a aplicarse, disp...

German politician (1888–1983) Rudolf FreidhofRudolf Freidhof (around 1921)Member of the BundestagIn office7 September 1949 – 6 October 1957 Personal detailsBorn(1888-09-23)23 September 1888GerlachsheimDied25 December 1983(1983-12-25) (aged 95)NationalityGermanPolitical partySPDRudolf Freidhof (September 23, 1888 – December 25, 1983) was a German politician of the Social Democratic Party (SPD) and a member of the German Bundestag.[1] Life After 1945, Freidhof wa...

 

فولتا كولومبيا 2023 تفاصيل السباقسلسلة73. فولتا كولومبيامنافسةطواف أمريكا للدراجات 2023 2.2‏مراحل10التواريخ16 – 25 يونيو 2023المسافات1٬410٫8 كمالبلد كولومبيانقطة البدايةيوبالنقطة النهايةلا سيخاالفرق25عدد المتسابقين في البداية164عدد المتسابقين في النهاية121متوسط السرعة41٫859 كم/سا...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2020) فلورينس كينيدي معلومات شخصية الميلاد 11 فبراير 1916  كانساس سيتي[1]  تاريخ الوفاة 22 ديسمبر 2000 (84 سنة)   مواطنة الولايات المتحدة  العرق أمريكية أفريق...

قرة تبة سبلان قره تپه سبلان  - قرية -  تقسيم إداري البلد  إيران[1] المحافظة أردبيل المقاطعة مقاطعة أردبيل الناحية الناحية المركزية القسم الريفي قسم سردابة الريفي إحداثيات 38°17′42″N 48°04′02″E / 38.295°N 48.06722°E / 38.295; 48.06722 السكان التعداد السكاني 877 نسمة (...

 

Austin & AllyGenreKomediPembuatKevin Kopelow & Heath SeifertPemeran Ross Lynch Laura Marano Raini Rodriguez Calum Worthy Penggubah lagu tema Joleen Belle Mike McGarity Julia Michaels Lagu pembukaCan't Do It Without You[a]Penata musikRick Butler & Fred RapoportNegara asalAmerika SerikatBahasa asliInggrisJmlh. musim4Jmlh. episode87ProduksiProduser eksekutif Kevin Kopelow & Heath Seifert Rick Nyholm Jeny Quine ProduserCraig Wyrick-SolariPengaturan kameraMulti-kamer...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!