This is purely a geometrical fact, and it corresponds to the case of a complete three-dimensional, space-like, totally geodesicsubmanifold
of a (3 + 1)-dimensional spacetime. Such a submanifold is often called a time-symmetric initial data set for a spacetime. The condition of (M, g) having nonnegative scalar curvature is equivalent to the spacetime obeying the dominant energy condition.
This inequality was first proved by Gerhard Huisken and Tom Ilmanen in 1997 in the case where A is the area of the largest component of the outermost minimal surface. Their proof relied on the machinery of weakly defined inverse mean curvature flow, which they developed. In 1999, Hubert Bray gave the first complete proof of the above inequality using a conformal flow of metrics. Both of the papers were published in 2001.
More generally, Penrose conjectured that an inequality as above should hold for spacelike submanifolds of spacetimes that are not necessarily time-symmetric. In this case, nonnegative scalar curvature is replaced with the dominant energy condition, and one possibility is to replace the minimal surface condition with an apparent horizon condition. Proving such an inequality remains an open problem in general relativity, called the Penrose conjecture.
In popular culture
In episode 6 of season 8 of the television sitcom The Big Bang Theory, Dr. Sheldon Cooper claims to be in the process of solving the Penrose Conjecture while at the same time composing his Nobel Prize acceptance speech.