Illumination problem

Roger Penrose's solution of the illumination problem using elliptical arcs (blue) and straight line segments (green), with 3 positions of the single light source (red spot). The purple crosses are the foci of the larger arcs. Lit and unlit regions are shown in yellow and grey respectively.

Illumination problems are a class of mathematical problems that study the illumination of rooms with mirrored walls by point light sources.

Original formulation

The original formulation was attributed to Ernst Straus in the 1950s and has been resolved. Straus asked whether a room with mirrored walls can always be illuminated by a single point light source, allowing for repeated reflection of light off the mirrored walls. Alternatively, the question can be stated as asking that if a billiard table can be constructed in any required shape, is there a shape possible such that there is a point where it is impossible to hit the billiard ball at another point, assuming the ball is point-like and continues infinitely rather than stopping due to friction.

Penrose unilluminable room

The original problem was first solved in 1958 by Roger Penrose using ellipses to form the Penrose unilluminable room. He showed that there exists a room with curved walls that must always have dark regions if lit only by a single point source.

Polygonal rooms

Solutions to the illumination problem by George W. Tokarsky (26 sides) and David Castro (24 sides)

This problem was also solved for polygonal rooms by George Tokarsky in 1995 for 2 and 3 dimensions, which showed that there exists an unilluminable polygonal 26-sided room with a "dark spot" which is not illuminated from another point in the room, even allowing for repeated reflections.[1] These were rare cases, when a finite number of dark points (rather than regions) are unilluminable only from a fixed position of the point source.

In 1995, Tokarsky found the first polygonal unilluminable room which had 4 sides and two fixed boundary points.[2] He also in 1996 found a 20-sided unilluminable room with two distinct interior points. In 1997, two different 24-sided rooms with the same properties were put forward by George Tokarsky and David Castro separately.[3][4]

In 2016, Samuel Lelièvre, Thierry Monteil, and Barak Weiss showed that a light source in a polygonal room whose angles (in degrees) are all rational numbers will illuminate the entire polygon, with the possible exception of a finite number of points.[5] In 2019 this was strengthened by Amit Wolecki who showed that for each such polygon, the number of pairs of points which do not illuminate each other is finite.[6]

See also

References

  1. ^ Tokarsky, George (December 1995). "Polygonal Rooms Not Illuminable from Every Point". American Mathematical Monthly. 102 (10). University of Alberta, Edmonton, Alberta, Canada: Mathematical Association of America: 867–879. doi:10.2307/2975263. JSTOR 2975263.
  2. ^ Tokarsky, G. (March 1995). "An Impossible Pool Shot?". SIAM Review. 37 (1). Philadelphia, PA: Society for Industrial and Applied Mathematics: 107–109. doi:10.1137/1037016.
  3. ^ Castro, David (January–February 1997). "Corrections" (PDF). Quantum Magazine. 7 (3). Washington DC: Springer-Verlag: 42.
  4. ^ Tokarsky, G. W. (February 1997). "Feedback, Mathematical Recreations". Scientific American. 276 (2). New York, N.Y.: Scientific American, Inc.: 98. JSTOR 24993618.
  5. ^ Lelièvre, Samuel; Monteil, Thierry; Weiss, Barak (4 July 2016). "Everything is illuminated". Geometry & Topology. 20 (3): 1737–1762. arXiv:1407.2975. doi:10.2140/gt.2016.20.1737.
  6. ^ Wolecki, Amit (2019). "Illumination in rational billiards". arXiv:1905.09358 [math.DS].

Read other articles:

Immagine illustrativa sul regime internazionale del mare Col termine acque territoriali o mare territoriale si considera in diritto internazionale quella porzione di mare adiacente alla costa degli Stati; su questa parte di mare lo Stato esercita la propria sovranità territoriale in modo del tutto analogo al territorio corrispondente alla terraferma, con alcuni limiti. Il principio del mare territoriale si contrappone al generico principio consolidato in secoli di storia del mare libero, aff...

 

МейссMeysse Країна  Франція Регіон Овернь-Рона-Альпи  Департамент Ардеш  Округ Прива Кантон Рошмор Код INSEE 07157 Поштові індекси 07400 Координати 44°36′37″ пн. ш. 4°43′23″ сх. д.H G O Висота 66 - 680 м.н.р.м. Площа 19,18 км² Населення 1372 (01-2020[1]) Густота 71,27 ос./км² Розміщенн...

 

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Maio de 2015) Diplommatinidae Desenho da concha de um Opisthostoma goniostoma Classificação científica Reino: Animalia Filo: Mollusca Classe: Gastropoda Família: Diplommatinidae Diplommatinidae é uma família de pequenos caracóis ter...

Ян ЧейкаJan ČejkaЗагальна інформаціяГромадянство  ЧехіяНародження 29 травня 2001(2001-05-29)[1] (22 роки)Пардубиці, Severovýchodd, Чехія[2]СпортКраїна  Чехія[1]Вид спорту спортивне плавання Участь і здобутки Ян Чейка (чеськ. Jan Čejka, 29 травня 2001) — чеський плавець. Учасник Ол

 

Schloss Georgium Sphingen am Haupteingang Römische Ruine (Sieben Säulen) Ionischer Tempel Ruinenbrücke im Park Gedenkstein für Prinz Johann Georg Triumphbogen (Weißer Bogen) Das Georgium ist neben dem Wörlitzer Park der kunsthistorisch bedeutendste Landschaftspark im Dessau-Wörlitzer Gartenreich im englischen Stil. Er wurde von Prinz Johann Georg, dem jüngeren Bruder des Fürsten Leopold III. Friedrich Franz von Anhalt-Dessau, geschaffen und nach ihm benannt. Zudem befindet sich dort ...

 

Alphabet used to write the Uyghur language in countries of the former Soviet Union This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Uyghur Cyrillic alphabet – news · newspapers · books · scholar · JSTOR (May 2023) The Uyghur Cyrillic alphabet (Cyrillic script: Уйғур Кирил Йезиқи, Ara...

Sociedad de Socorro Tipo Sin ánimo de lucroFundación 17 de marzo de 1842Fundador Iglesia De Jesucristo De Los Santos De Los Últimos DíasSede central Salt Lake City, Utah, Estados UnidosPropietario Iglesia De Jesucristo De Los Santos De Los Últimos DíasMiembro de 8 millones de mujeres en 170 paísesSitio web www.ChurchOfJesusChrist.org/callings/relief-society-organization[editar datos en Wikidata] La Sociedad de Socorro es una organización filantrópica y educativa de mujeres ...

 

ShadowhuntersGenreFantasiBerdasarkanTemplat:BerdasarkanPengembangEd DecterPemeran Katherine McNamara Dominic Sherwood Alberto Rosende Matthew Daddario Emeraude Toubia Isaiah Mustafa Harry Shum, Jr. Lagu pembukaThis Is The Hunt oleh RuellePenata musikBen DecterNegara asalAmerika SerikatBahasa asliInggrisJmlh. musim3Jmlh. episode55 (daftar episode)ProduksiProduser eksekutif Ed Decter McG Mary Viola J. Miles Dale Robert Kulzer Michael Lynne Robert Shaye Michael Reisz Produser Don Carmody D...

 

1983 studio album by Waylon JenningsWaylon and CompanyStudio album by Waylon JenningsReleasedSeptember 1983GenreCountryoutlaw countryLength32:02LabelRCA VictorProducerWaylon JenningsWaylon Jennings chronology Take It to the Limit(1983) Waylon and Company(1983) Never Could Toe the Mark(1984) Singles from Waylon and Company The ConversationReleased: October 22, 1983 I May Be Used (But Baby I Ain't Used Up)Released: March 3, 1984 Professional ratingsReview scoresSourceRatingAllmusic[...

Apple cultivar SansaIn a Connecticut orchard 2016SpeciesMalus pumilaHybrid parentageCross of the Japanese Akane and New Zealand GalaCultivar'Sansa' The Sansa apple is a red apple with yellow streaks, first released commercially in 1988.[1] They ripen early in New England, starting in August, and by autumn they are no longer available. References ^ New England Applebaum. New England Orchards. Retrieved 27 November 2016. vteApples List of apple cultivars Species Malus domestica Malus ni...

 

American politician Hosea Mann Jr. Hosea A. Mann Jr. (July 13, 1858 – September 7, 1948) was a Vermont lawyer and politician. Mann born in Wilmington, Vermont, on July 13, 1858, the son of Hosea and Maria (Grousbeck) Mann. Mann was educated in the common schools and at the Brattleboro Academy and Eastman's Business College in Poughkeepsie, New York. He read law under O. E. Butterfield and was admitted to the bar at Windham County in 1882, commencing a practice in Wilmington. In 1879 Mann wa...

 

MGM Grand Detroit Address 1777 Third Street[1]Detroit, Michigan 48226Opening dateJuly 29, 1999; 24 years ago (July 29, 1999) (as temporary casino)October 3, 2007; 16 years ago (October 3, 2007) (as permanent luxury resort)ThemeArt DecoNo. of rooms401Total gaming space100,000 sq ftPermanent shows1,200-seat theatreSignature attractionsUpscale shoppingVIP Night ClubNotable restaurantsPalette Dining StudioD.PRIME SteakhouseDetroit Central MarketTAPCasino typeLand...

Эта статья — об американском телесериале. Об одноимённом британском телесериале см. Бесстыдники (телесериал, Великобритания). Стиль этой статьи неэнциклопедичен или нарушает нормы литературного русского языка. Статью следует исправить согласно стилистичес...

 

This article is about the song. For the type of store the song is about, see charity shop. 2012 single by Macklemore & Ryan Lewis featuring WanzThrift ShopSingle by Macklemore & Ryan Lewis featuring Wanzfrom the album The Heist B-sideTen Thousand HoursReleasedAugust 27, 2012 (2012-08-27)Recorded2011Genre Pop-rap[1][2] comedy hip hop Length3:55Label Macklemore LLC Songwriter(s) Ben Haggerty Ryan Lewis Producer(s)LewisMacklemore & Ryan Lewis single...

 

Association football championship 2023 COSAFA Women's ChampionshipTournament detailsHost country South AfricaDates4–15 OctoberTeams12 (from 1 sub-confederation)Venue(s)3 (in 2 host cities)Final positionsChampions Malawi (1st title)Runners-up ZambiaThird place MozambiqueFourth place ZimbabweTournament statisticsMatches played22Goals scored70 (3.18 per match)Top scorer(s) Temwa Chawinga(9 goals)Best player(s) Temwa ChawingaBest goalkeeper Cynthia S...

Harvin Kidingallo Waasrenum Panglima TNIPetahanaMulai menjabat 29 November 2023 PendahuluBerlin GermanyPenggantiPetahana Informasi pribadiLahir28 April 1974 (umur 49)Palopo, Sulawesi SelatanAlma materAkademi Militer (1995)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1995—sekarangPangkat Brigadir Jenderal TNISatuanArhanudSunting kotak info • L • B Brigadir Jenderal TNI Harvin Kidingallo, S.H., S.T., M.Han. (lahir 28 April 1974) adalah...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sergeant Swell of the Mounties – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) 1972 American filmSergeant Swell of the MountiesDirected byLen JansonChuck MenvilleWritten byLen JansonChuck MenvillePro...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. صورة لمدينة أكادير بعد الزلزال المدمّر الذي ضرب المدينة في عام 1960. شمال المغرب هو منطقة جغرافية واقعة بالقرب من الحد الفاصل بين الصفيحة الأفريقية والصفيحة الأوراسية (صدع جبل ...

Arabische Oryx Arabische Oryx Systematik ohne Rang: Stirnwaffenträger (Pecora) Familie: Hornträger (Bovidae) Unterfamilie: Antilopinae Tribus: Pferdeböcke (Hippotragini) Gattung: Oryxantilopen (Oryx) Art: Arabische Oryx Wissenschaftlicher Name Oryx leucoryx (Pallas, 1777) Die Arabische Oryx (Oryx leucoryx) ist eine Antilope aus der Gattung der Oryxantilopen, die einst in den Wüsten und Halbwüsten Westasiens verbreitet war. Oft wird sie auch Weiße Oryx genannt. Inhaltsverzeichnis 1...

 

Village in Eastern, North MacedoniaGrljani ГрљаниVillageGrljaniLocation within North MacedoniaCoordinates: 41°56′17″N 22°37′20″E / 41.938019°N 22.622103°E / 41.938019; 22.622103Country North MacedoniaRegion EasternMunicipality VinicaPopulation (2002) • Total206Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST)Website. Grljani (Macedonian: Грљани) is a village in the municipality of Vinica, North Macedonia. Demograp...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!