Picard theorem

In complex analysis, Picard's great theorem and Picard's little theorem are related theorems about the range of an analytic function. They are named after Émile Picard.

The theorems

Domain coloring plot of the function exp(1z), centered on the essential singularity at z = 0. The hue of a point z represents the argument of exp(1z), the luminance represents its absolute value. This plot shows that arbitrarily close to the singularity, all non-zero values are attained.

Little Picard Theorem: If a function is entire and non-constant, then the set of values that assumes is either the whole complex plane or the plane minus a single point.

Sketch of Proof: Picard's original proof was based on properties of the modular lambda function, usually denoted by , and which performs, using modern terminology, the holomorphic universal covering of the twice punctured plane by the unit disc. This function is explicitly constructed in the theory of elliptic functions. If omits two values, then the composition of with the inverse of the modular function maps the plane into the unit disc which implies that is constant by Liouville's theorem.

This theorem is a significant strengthening of Liouville's theorem which states that the image of an entire non-constant function must be unbounded. Many different proofs of Picard's theorem were later found and Schottky's theorem is a quantitative version of it. In the case where the values of are missing a single point, this point is called a lacunary value of the function.

Great Picard's Theorem: If an analytic function has an essential singularity at a point , then on any punctured neighborhood of takes on all possible complex values, with at most a single exception, infinitely often.

This is a substantial strengthening of the Casorati–Weierstrass theorem, which only guarantees that the range of is dense in the complex plane. A result of the Great Picard Theorem is that any entire, non-polynomial function attains all possible complex values infinitely often, with at most one exception.

The "single exception" is needed in both theorems, as demonstrated here:

  • ez is an entire non-constant function that is never 0,
  • has an essential singularity at 0, but still never attains 0 as a value.

Proof

Little Picard Theorem

Suppose is an entire function that omits two values and . By considering we may assume without loss of generality that and .

Because is simply connected and the range of omits , f has a holomorphic logarithm. Let be an entire function such that . Then the range of omits all integers. By a similar argument using the quadratic formula, there is an entire function such that . Then the range of omits all complex numbers of the form , where is an integer and is a nonnegative integer.

By Landau's theorem, if , then for all , the range of contains a disk of radius . But from above, any sufficiently large disk contains at least one number that the range of h omits. Therefore for all . By the fundamental theorem of calculus, is constant, so is constant.

Great Picard Theorem

Proof of the Great Picard Theorem

Suppose f is an analytic function on the punctured disk of radius r around the point w, and that f omits two values z0 and z1. By considering (f(p + rz) − z0)/(z1z0) we may assume without loss of generality that z0 = 0, z1 = 1, w = 0, and r = 1.

The function F(z) = f(ez) is analytic in the right half-plane Re(z) > 0. Because the right half-plane is simply connected, similar to the proof of the Little Picard Theorem, there are analytic functions G and H defined on the right half-plane such that F(z) = eiG(z) and G(z) = cos(H(z)). For any w in the right half-plane, the open disk with radius Re(w) around w is contained in the domain of H. By Landau's theorem and the observation about the range of H in the proof of the Little Picard Theorem, there is a constant C > 0 such that |H′(w)| ≤ C / Re(w). Thus, for all real numbers x ≥ 2 and 0 ≤ y ≤ 2π,

where A > 0 is a constant. So |G(x + iy)| ≤ xA.

Next, we observe that F(z + 2πi) = F(z) in the right half-plane, which implies that G(z + 2πi) − G(z) is always an integer. Because G is continuous and its domain is connected, the difference G(z + 2πi) − G(z) = k is a constant. In other words, the function G(z) − kz / (2πi) has period 2πi. Thus, there is an analytic function g defined in the punctured disk with radius e−2 around 0 such that G(z) − kz / (2πi) = g(ez).

Using the bound on G above, for all real numbers x ≥ 2 and 0 ≤ y ≤ 2π,

holds, where A′ > A and C′ > 0 are constants. Because of the periodicity, this bound actually holds for all y. Thus, we have a bound |g(z)| ≤ C′(−log|z|)A for 0 < |z| < e−2. By Riemann's theorem on removable singularities, g extends to an analytic function in the open disk of radius e−2 around 0.

Hence, G(z) − kz / (2πi) is bounded on the half-plane Re(z) ≥ 3. So F(z)ekz is bounded on the half-plane Re(z) ≥ 3, and f(z)zk is bounded in the punctured disk of radius e−3 around 0. By Riemann's theorem on removable singularities, f(z)zk extends to an analytic function in the open disk of radius e−3 around 0. Therefore, f does not have an essential singularity at 0.

Therefore, if the function f has an essential singularity at 0, the range of f in any open disk around 0 omits at most one value. If f takes a value only finitely often, then in a sufficiently small open disk around 0, f omits that value. So f(z) takes all possible complex values, except at most one, infinitely often.

Generalization and current research

Great Picard's theorem is true in a slightly more general form that also applies to meromorphic functions:

Great Picard's Theorem (meromorphic version): If M is a Riemann surface, w a point on M, P1(C) = C ∪ {∞} denotes the Riemann sphere and f : M\{w} → P1(C) is a holomorphic function with essential singularity at w, then on any open subset of M containing w, the function f(z) attains all but at most two points of P1(C) infinitely often.

Example: The function f(z) = 1/(1 − e1/z) is meromorphic on C* = C - {0}, the complex plane with the origin deleted. It has an essential singularity at z = 0 and attains the value ∞ infinitely often in any neighborhood of 0; however it does not attain the values 0 or 1.

With this generalization, Little Picard Theorem follows from Great Picard Theorem because an entire function is either a polynomial or it has an essential singularity at infinity. As with the little theorem, the (at most two) points that are not attained are lacunary values of the function.

The following conjecture is related to "Great Picard's Theorem":[1]

Conjecture: Let {U1, ..., Un} be a collection of open connected subsets of C that cover the punctured unit disk D \ {0}. Suppose that on each Uj there is an injective holomorphic function fj, such that dfj = dfk on each intersection Uj ∩ Uk. Then the differentials glue together to a meromorphic 1-form on D.

It is clear that the differentials glue together to a holomorphic 1-form g dz on D \ {0}. In the special case where the residue of g at 0 is zero the conjecture follows from the "Great Picard's Theorem".

Notes

  1. ^ Elsner, B. (1999). "Hyperelliptic action integral" (PDF). Annales de l'Institut Fourier. 49 (1): 303–331. doi:10.5802/aif.1675.

References

Read other articles:

Изображение было скопировано с wikipedia:en. Оригинальное описание содержало: Зміст 1 Summary 2 Licensing 3 Fair use in You Wanted the Best, You Got the Best!! 4 Source Summary Cover for You Wanted the Best, You Got The Best by KISS. Licensing Це зображення є обкладинкою музичного альбому або синглу. Найімовірніше, авторськими правами на обкладин

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) رون باريت معلومات شخصية الميلاد 25 يوليو 1937 (86 سنة)  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم ثانوية الفنون والتصميم  [لغات أخرى]‏  ا

 

 

2016年夏季奥林匹克运动会苏里南代表團苏里南国旗IOC編碼SURNOC苏里南奥林匹克委员会網站surolympic.org(英文)2016年夏季奥林匹克运动会(里約熱內盧)2016年8月5日至8月21日運動員6參賽項目4个大项旗手开幕式:苏林·奥普提(羽毛球)[1]闭幕式:里约奥组委志愿者[2]历届奥林匹克运动会参赛记录(总结)夏季奥林匹克运动会19601964196819721976198019841988199219962000200420082...

A sinopse deste artigo pode ser extensa demais ou muito detalhada. Por favor ajude a melhorá-la removendo detalhes desnecessários e deixando-a mais concisa. (Junho de 2022) Sucker Punch Sucker Punch - Mundo Surreal (PRT/BRA) Sucker Punch - Mundo SurrealPôster promocional  Estados Unidos Canadá2011 •  cor •  110 min  Gênero açãodramafantasiasteampunk Direção Zack Snyder Produção Deborah SnyderZack Snyder Roteiro Zack SnyderSteve Shibuya História Za...

 

 

المجلس التأسيسي الكويتي القيادة رئيس المجلس التأسيسي عبداللطيف محمد الغانممنذ 20 يناير 1962 نائب رئيس المجلس التأسيسي الدكتور أحمد محمد الخطيبمنذ 20 يناير 1962 الأعضاء 50 عضو منتخب من الشعب الكويتيرئيس مجلس الوزراء والوزراء بحكم مناصبهم نظام انتخابي 10 دوائر أنتخابية تنتخب كل دا

 

 

Instituciones políticas de la Unión EuropeaSede del Parlamento Europeo en Estrasburgo.Interior del Edificio Europa (Bruselas), sede principal del Consejo Europeo, del Consejo de la Unión Europea y de otros órganos de alto nivel de la UE.[1]​Sede de la Comisión Europea. El marco institucional[2]​ de la Unión Europea (UE) se compone de las siete altas instituciones a las que los Estados miembros atribuyen competencias de gobierno para el ejercicio comunitario de parte de sus p...

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (سبتمبر 2019) وكالة الأنباء العمانية تفاصيل الوكالة الحكومية البلد سلطنة عمان  تأسست 1986&#...

 

 

Love is MoveSingel oleh Secretdari album Moving in SecretDirilis18 Oktober 2011 (2011-10-18)FormatCD single, digital downloadDirekam2011GenrePop, K-popDurasi3:20LabelTS EntertainmentPenciptaKang Jiwon, Kim KibumProduserKang Jiwon, Kim Kibum Love is Move (Korean: 사랑은 MOVE, bergaya sebagai Love is MOVE) adalah lagu oleh girlband Korea Selatan, Secret. Singel ini dirilis sebagai singel pemimpin untuk album studio pertama mereka, Moving in Secret. Lagu ini ditulis oleh Kang Jiwon dan K...

 

 

Joshua Michael Stern Información personalNacimiento 12 de enero de 1961 (62 años)Nacionalidad EstadounidenseInformación profesionalOcupación Director de cine, guionistaAños activo 1996–presenteObras notables Neverwas, Swing Vote, Jobs[editar datos en Wikidata] Joshua Michael Stern es un director de cine y guionista estadounidense. Ha dirigido tres películas: Neverwas (2005), Swing Vote (2008) y Jobs, basada en la vida de Steve Jobs, fundador de Apple Computer.[1]​ Film...

اقتصاد بورتوريكوعامالدولة الولايات المتحدة عملة دولار أمريكي الإحصائياتنمو الناتج الإجمالي -1.8 نسبة مئوية[1](2016) نصيب الفرد من الناتج الإجمالي 30518 دولار أمريكي[2](2016) التضخم الاقتصادي (CPI) -0.2 نسبة مئوية[3](2016) تعديل - تعديل مصدري - تعديل ويكي بيانات سان خوان صنف البن...

 

 

BrañoseraMunisipalitas LambangNegara SpanyolKomunitas otonom Castile and LeónProvinsiPalenciaMunisipalitasBrañoseraLuas • Total61,97 km2 (23,93 sq mi)Ketinggian1.220 m (4,000 ft)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Situs webSitus web resmi Brañosera adalah sebuah munisipalitas yang terletak di provinsi Palencia, Castilla y León, Spanyol. Menurut sensus 2004,[1] munisipalitas ini berpenduduk sebesar 284 jiw...

 

 

Acer Aspire 8920. Acer Aspire adalah sebuah seri komputer oleh Acer yang ditujukan untuk pengguna rumahan atau keperluan bisnis kecil. Seri Aspire terdiri dari komputer desktop dan komputer jinjing (bahasa Inggris: laptop). Model Acer Aspire Aspire 1570 Aspire 1640/1642NWLMi Aspire 2930 Aspire 3023 WLMi Aspire 3410 Aspire 3620 Aspire 3610 Aspire 3680 Aspire 3690 Aspire 3810 T Aspire 3935 Aspire 4315 Aspire 4520 Aspire 4530 Aspire 4540 Aspire 4710 Aspire 4715 Z Aspire 4720 Z Aspire 4730 Z ...

AquitoNama lahirLourenço CabralLahir Timor PortugisPengabdian Timor LesteDinas/cabang Falintil Pasukan Pertahanan Timor LestePangkat Letnan FDTLPerang/pertempuranPendudukan Indonesia di Timor Timur Letnan FDTL Aquito adalah tokoh militer Timor Leste. Dia pernah menjabat sebagai Komandan Peleton Falintil.[1] Kepangkatan Lambang Pangkat Tanggal Letnan FDTL 2 Februari 2022 — sekarang Referensi ^ Jornal da República: Edisi 20 Desember 2006 (PDF; 403 kB), diakses pada 23 Maret 2018. (d...

 

 

Абрахам Хондіус. «Авантюрна подорож в Арктику», 1677. Музей Фіцвільяма Золота доба голландського живопису — найвидатніша доба в живопису в Нідерландах, що приблизно припадає на усе 17 століття. Зміст 1 Історичні умови 2 Утрехтські караваджисти 3 Голландці і колоніалізм 4 ...

 

 

2022 single by SiMThe RumblingSingle by SiMfrom the EP Beware LanguageEnglishReleasedFebruary 7, 2022 (2022-02-07)Recorded2021Genre Heavy metal[1] metalcore[2] symphonic metal Length3:40LabelPony CanyonComposer(s)SiMLyricist(s)MAHSiM singles chronology Captain Hook (2020) The Rumbling (2022) Under the Tree (2023) Audio samplefilehelpMusic videoThe Rumbling on YouTubeAlternate coverTV size version cover The Rumbling is a single recorded by Japanese alternative me...

Dominican Republic basketball player (born 1981) In this Spanish name, the first or paternal surname is Garcia and the second or maternal family name is Gutiérrez. Francisco GarcíaGarcía with the Dominican national team in 2011Personal informationBornDecember 31, 1981[a]San Francisco de Macoris, Dominican RepublicNationalityDominicanListed height6 ft 7 in (2.01 m)Listed weight195 lb (88 kg)Career informationHigh schoolThe Winchendon School(Winchendo...

 

 

Альтеро Маттеоліітал. Altero Matteoli Ім'я при народженні італ. Altero MatteoliНародився 8 вересня 1940(1940-09-08) (83 роки)Чечина, ТосканаПомер 18 грудня 2017(2017-12-18)[1] (77 років)Капальбіо, Провінція Гроссето, Тоскана, Італія·дорожньо-транспортна пригодаКраїна  Італія Королівство ІталіяД...

 

 

Localização dos arquipélagos que constituem Kiribati no Oceano Pacífico Esta é a lista das ilhas de Kiribati. A República de Kiribati consta de 32 atóis e uma ilha de coral. Estas ilhas estão dispersas ao longo dos três grupos de ilhas que formam Kiribati: Ilhas Gilbert Ilhas Fénix Ilhas da Linha (ou Espórades Equatoriais) Todas as Ilhas Fénix, menos a ilha Canton que tem uma baixa densidade populacional, estão desabitadas. As restantes Ilhas Fénix são uma zona marinha protegid...

1956 film by Walter Lang This article is about the 1956 film. For other uses, see The King and I (disambiguation). The King and ITheatrical release poster by Tom ChantrellDirected byWalter LangScreenplay byErnest LehmanBased on The King and I1951 musicalby Richard Rodgers and Oscar Hammerstein II Anna and the King of Siam1944 novelby Margaret Landon Produced byCharles BrackettStarring Deborah Kerr Yul Brynner Rita Moreno Martin Benson Rex Thompson CinematographyLeon ShamroyEdited byRobert Sim...

 

 

Для улучшения этой статьи желательно: Проставить сноски, внести более точные указания на источники.После исправления проблемы исключите её из списка. Удалите шаблон, если устранены все недостатки. Нью-джек-свинг Направление Современный ритм-н-блюз Истоки Соул, Фанк, Хип-...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!