Phosphoribosyl-N-formylglycineamide
Phosphoribosyl-N -formylglycineamide
Names
IUPAC name
(1R )-1,4-Anhydro-1-(N 2 -formylglycinamido)-D -ribitol 5-(dihydrogen phosphate)
Systematic IUPAC name
[(2R ,3S ,4R ,5R )-5-(2-Formamidoacetamido)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate
Other names
Formylglycinamide ribonucleotide, Formylglycinamide ribotide, FGAR
Identifiers
ChemSpider
MeSH
Phosphoribosyl-N-formylglycineamide
InChI=1S/C8H15N2O9P/c11-3-9-1-5(12)10-8-7(14)6(13)4(19-8)2-18-20(15,16)17/h3-4,6-8,13-14H,1-2H2,(H,9,11)(H,10,12)(H2,15,16,17)/t4-,6-,7-,8-/m1/s1
Y Key: VDXLUNDMVKSKHO-XVFCMESISA-N
Y
C([C@@H]1[C@H]([C@H]([C@@H](O1)NC(=O)CNC=O)O)O)OP(=O)(O)O
Properties
C8 H15 N2 O9 P
Molar mass
314.187 g/mol
Except where otherwise noted, data are given for materials in their
standard state (at 25 °C [77 °F], 100 kPa).
Chemical compound
Phosphoribosyl-N -formylglycineamide (or FormylGlycinAmideRibotide , FGAR) is a biochemical intermediate in the formation of purine nucleotides via inosine -5-monophosphate, and hence is a building block for DNA and RNA .[ 1] [ 2] The vitamins thiamine [ 3] and cobalamin [ 4] also contain fragments derived from FGAR.[ 5]
FGAR is formed when the enzyme phosphoribosylglycinamide formyltransferase adds a formyl group from 10-formyltetrahydrofolate to glycineamide ribonucleotide (GAR) in reaction EC 2.1.2.2 :[ 6]
GAR + 10-formyltetrahydrofolate → FGAR + tetrahydrofolate
The biosynthesis pathway next converts FGAR to an amidine by the action of phosphoribosylformylglycinamidine synthase (EC 6.3.5.3 ), transferring an amino group from glutamine and giving 5'-phosphoribosylformylglycinamidine (FGAM) in a reaction that also requires ATP:[ 6]
FGAR + ATP + glutamine + H2 O → FGAM + ADP + glutamate + Pi
See also
References
^ R. Caspi (2009-01-13). "Pathway: 5-aminoimidazole ribonucleotide biosynthesis I" . MetaCyc Metabolic Pathway Database. Retrieved 2022-02-02 .
^ Gupta, Rani; Gupta, Namita (2021). "Nucleotide Biosynthesis and Regulation". Fundamentals of Bacterial Physiology and Metabolism . pp. 525– 554. doi :10.1007/978-981-16-0723-3_19 . ISBN 978-981-16-0722-6 . S2CID 234897784 .
^ Chatterjee, Abhishek; Hazra, Amrita B.; Abdelwahed, Sameh; Hilmey, David G.; Begley, Tadhg P. (2010). "A "Radical Dance" in Thiamin Biosynthesis: Mechanistic Analysis of the Bacterial Hydroxymethylpyrimidine Phosphate Synthase" . Angewandte Chemie International Edition . 49 (46): 8653– 8656. doi :10.1002/anie.201003419 . PMC 3147014 . PMID 20886485 .
^ R. Caspi (2019-09-23). "Pathway: 5-hydroxybenzimidazole biosynthesis (anaerobic)" . MetaCyc Metabolic Pathway Database. Retrieved 2022-02-10 .
^ Mehta, Angad P.; Abdelwahed, Sameh H.; Fenwick, Michael K.; Hazra, Amrita B.; Taga, Michiko E.; Zhang, Yang; Ealick, Steven E.; Begley, Tadhg P. (2015). "Anaerobic 5-Hydroxybenzimidazole Formation from Aminoimidazole Ribotide: An Unanticipated Intersection of Thiamin and Vitamin B12 Biosynthesis" . Journal of the American Chemical Society . 137 (33): 10444– 10447. doi :10.1021/jacs.5b03576 . PMC 4753784 . PMID 26237670 .
^ a b Welin, Martin; Grossmann, Jörg Günter; Flodin, Susanne; Nyman, Tomas; Stenmark, Pål; Trésaugues, Lionel; Kotenyova, Tetyana; Johansson, Ida; Nordlund, Pär; Lehtiö, Lari (2010). "Structural studies of tri-functional human GART" . Nucleic Acids Research . 38 (20): 7308– 7319. doi :10.1093/nar/gkq595 . PMC 2978367 . PMID 20631005 .