A phonon polariton is a type of quasiparticle that can form in some crystals due to the coupling of photons and lattice vibrations. They have properties of both light and sound waves, and can travel at very slow speeds in the material. They are useful for manipulating electromagnetic fields at nanoscale and enhancing optical phenomena.[4] Phonon polaritons only result from coupling of transverse optical phonons, this is due to the particular form of the dispersion relation of the phonon and photon and their interaction. Photons consist of electromagnetic waves, which are always transverse. Therefore, they can only couple with transverse phonons in crystals.
Near the dispersion relation of an acoustic phonon can be approximated as being linear, with a particular gradient giving a dispersion relation of the form , with the speed of the wave, the angular frequency and k the absolute value of the wave vector . The dispersion relation of photons is also linear, being also of the form , with c being the speed of light in vacuum. The difference lies in the magnitudes of their speeds, the speed of photons is many times larger than the speed for the acoustic phonons. The dispersion relations will therefore never cross each other, resulting in a lack of coupling. The dispersion relations touch at , but since the waves have no energy, no coupling will occur.
Optical phonons, by contrast, have a non-zero angular frequency at and have a negative slope, which is also much smaller in magnitude to that of photons. This will result in the crossing of the optical phonon branch and the photon dispersion, leading to their coupling and the forming of a phonon polariton.
Dispersion relation
The behavior of the phonon polaritons can be described by the dispersion relation. This dispersion relation is most easily derived for diatomic ion crystals with optical isotropy, for example sodium chloride and zinc sulfide. Since the atoms in the crystal are charged, any lattice vibration which changes the relative distance between the two atoms in the unit cell will change the dielectric polarization of the material. To describe these vibrations, it is useful to introduce the parameter w, which is given by:
Where
is the displacement of the positive atom relative to the negative atom;
For the full coupling between the phonon and the photon, we need the four Maxwell's equations in matter. Since, macroscopically, the crystal is uncharged and there is no current, the equations can be simplified. A phonon polariton must abide all of these six equations. To find solutions to this set of equations, we write the following trial plane wave solutions for , and :
Where denotes the wave vector of the plane wave, the position, t the time, and ω the angular frequency. Notice that wave vector should be perpendicular to the electric field and the magnetic field. Solving the resulting equations for ω and k, the magnitude of the wave vector, yields the following dispersion relation, and furthermore an expression for the optical dielectric constant:[6]
With the optical dielectric constant.
The solution of this dispersion relation has two branches, an upper branch and a lower branch (see also the figure). If the slope of the curve is low, the particle is said to behave "phononlike", and if the slope is high the particle behaves "photonlike", owing these names to the slopes of the regular dispersion curves for phonons and photons.[7] The phonon polariton behaves phononlike for low k in the upper branch, and for high k in the lower branch. Conversely, the polariton behaves photonlike for high k in the upper branch, low k in the lower branch.
Limit behaviour of the dispersion relation
The dispersion relation describes the behaviour of the coupling. The coupling of the phonon and the photon is the most promininent in the region where the original transverse disperion relations would have crossed. In the limit of large k, the solid lines of both branches approach the dotted lines, meaning, the coupling does not have a large impact on the behaviour of the vibrations.
Towards the right of the crossing point, the upper branch behaves like a photon. The physical interpretation of this effect is that the frequency becomes too high for the ions to partake in the vibration, causing them to be essentially static. This results in a dispersion relation resembling one of a regular photon in a crystal. The lower branch in this region behaves, because of their low phase velocity compared to the photons, as regular transverse lattice vibrations.[6]
The longitudonal optical phonon frequency is defined by the zero of the equation for the dielectric constant.[7] Writing the equation for the dielectric constant in a different way yields:
Solving the equation yields:
This equation gives the ratio of the frequency of the longitudonal optical phonon (), to the frequency of the transverse optical phonon () in diatomic cubic ionic crystals, and is known as the Lyddane-Sachs-Teller relation. The ratio can be found using inelastic neutron scattering experiments.
Surface phonon polariton
Surface phonon polariton(SPhPs) are a specific kind of phonon polariton.[8] They are formed by the coupling of optical surface phonon, instead of normal phonons, and light, resulting in an electromagnetic surface wave. They are similar to surface plasmon polaritons, although studied to a far lesser extent.[9] The applications are far ranging from materials with negative index of refraction to high-density IR data storage.[10][11]
One other application is in the cooling of microelectronics. Phonons are the main source of heat conductivity in materials, where optical phonons contribute far less than acoustic phonons. This is because of the relatively low group velocity of optical phonons. When the thickness of the material decreases, the conductivity of via acoustic also decreases, since surface scattering increases.[12] This microelectronics are getting smaller and smaller, reductions is getting more problematic. Although optical phonons themselves do not have a high thermal conductivity, SPhPs do seem to have this. So they may be an alternative means of cooling these electronic devices.[13]
Experimental observation
Most observations of phonon polaritons are made of surface phonon polaritons, since these can be easily probed by Raman spectroscopy or AFM.
Raman spectroscopy
As with any Raman experiment, a laser is pointed at the material being studied. If the correct wavelength is chosen, this laser can induce the formation of a polariton on the sample. Looking at the Stokes shifted emitted radiation and by using the conservation of energy and the known laser energy, one can calculate the polariton energy, with which one can construct the dispersion relation.[2]
SNOM and AFM
The induction of polaritons is very similar to that in Raman experiments, with a few differences. With the extremely high spatial resolution of SNOM, one can induce polaritons very locally in the sample. This can be done continuously, producing a continuous wave(CW) of polariton, or with an ultrafast pulse, producing a polariton with a very high temporal footprint. In both cases the polaritons are detected by the tip of the AFM, this signal is then used to calculate the energy of the polariton. One can also perform these experiments near the edge of the sample. This will result in the polaritons being reflected. In the case of CW polaritons, standing waves will be created, which will again be detected by the AFM tip. In the case of the polaritons created by the ultrafast laser, no standing wave will be created. The wave can still interfere with itself the moment it is reflected of the edge. Whether one is observing on the bulk surface or close to an edge, the signal is in temporal form. One can Fourier transform this signal, converting the signal into frequency domain, which can used to obtain the dispersion relation.[14]
Phonon polaritons also find use in the field of polaritonics, a field between photonics and electronics. In this field phonon polaritons are used for high speed signal processing and terahertz spectroscopy.[15] The real-space imaging of phonon polaritons was made possible by projecting them onto a CCD camera.[16]
لمعانٍ أخرى، طالع باتان (توضيح). باتان خريطة الموقع تقسيم إداري البلد الهند [1] التقسيم الأعلى كجرات خصائص جغرافية إحداثيات 23°50′N 72°07′E / 23.83°N 72.12°E / 23.83; 72.12 المساحة 5792 كيلومتر مربع السكان التعداد السكاني 1343734 (2011)[2] الكثافة ال
Campionati del mondo di ciclismo su pista 2005 Competizione Campionati del mondo di ciclismo su pista Sport Ciclismo su pista Edizione 102ª Organizzatore UCI Date 24-27 marzo Luogo Los Angeles Impianto/i VELO Sports Center Statistiche Miglior medagliato Theo Bos (2/1/0) Miglior nazione Gran Bretagna (4/1/1) Gare 9 gare maschili6 gare femminili Cronologia della competizione Melbourne 2004 Bordeaux 2006 Manuale I Campionati del mondo di ciclismo su pista 2005 (en.: 2005 UCI Tra...
Safety in Numbers kan verwijzen naar: Safety in Numbers (1930), een Amerikaanse filmkomedie onder regie van Victor Schertzinger Safety in Numbers (1938), een Amerikaanse filmkomedie onder regie van Malcolm St. Clair Safety in Numbers (2006), een Australische horrorfilm onder regie van David J. Douglas Bekijk alle artikelen waarvan de titel begint met Safety in Numbers of met Safety in Numbers in de titel. Dit is een doorverwijspagina, bedoeld om de verschillen in bete...
Sexual violence in India Rape Types Acquaintance rape Campus rape Corrective rape LGBT victims Drug-facilitated rape Date rape Gang rape Genocidal rape Gray rape Live streaming rape Marital rape Prison rape Rape chant Serial rape Statutory rape Unacknowledged rape Rape by deception Effects and motivations Effects and aftermath Pregnancy from rape Rape trauma syndrome Causes Post-assault mistreatment Weinstein effect Sociobiological theories Rape culture By country Afghanistan Belgium China De...
Luis César Amadori Luis César Amadori en 1949Información personalNacimiento 28 de mayo de 1902 Pescara (Reino de Italia) Fallecimiento 5 de junio de 1977 (75 años)Buenos Aires (Argentina) Sepultura Cementerio de la Recoleta Nacionalidad Argentina e italiana (1946-1977)FamiliaCónyuge Zully Moreno (matr. 1947)Hijos 1EducaciónEducado en Colegio La Salle Buenos Aires Información profesionalOcupación Director de cine, guionista y pintor Género Tango [editar datos en Wik...
Valle de Tabladillo municipio de España Valle de TabladilloUbicación de Valle de Tabladillo en España. Valle de TabladilloUbicación de Valle de Tabladillo en la provincia de Segovia.País España• Com. autónoma Castilla y León• Provincia Segovia• Comarca Comunidad de Villa y Tierra de Sepúlveda• Partido judicial Partido de Sepúlveda• Mancomunidad Municipios de La PedrizaUbicación 41°21′47″N 3°50...
موراي ر. شبيغل معلومات شخصية الميلاد سنة 1923 بروكلين الوفاة سنة 1991 (67–68 سنة) إيست هارتفورد مواطنة الولايات المتحدة الحياة العملية المدرسة الأم جامعة كورنيل مشرف الدكتوراه مارك كاك المهنة رياضياتي، وفيزيائي، وأستاذ جامعي اللغات الإنجليزي...
Международная транспортная премия«Золотая Колесница» Главный приз премии Страна Россия Награда за значительный вклад в развитие транспортной отрасли Учредитель Министерство транспорта России и один из комитетов Государственной думы России Основание 2005 Сайт transpor...
смт Путила Прапор Путили Вигляд на Путилу з гори. Літо 2005 р.Вигляд на Путилу з гори. Літо 2005 р. Країна Україна Область Чернівецька область Район Вижницький район Громада Путильська селищна громада Код КАТОТТГ: Основні дані Засноване 1501 Статус із 1961 року Площа км² На...
2022 soundtrack album by AdoUta's Songs: One Piece Film RedStandard coverSoundtrack album by AdoReleasedAugust 10, 2022Studio Victor Studio (Shibuya) HeartBeat (Setagaya) Sound City (Tokyo) Onkio Haus (Ginza) Genre Anison J-pop pop rock Length30:53LabelVirginProducer Yasutaka Nakata Motoki Ohmori Vaundy Fake Type Hiroyuki Sawano Yuta Orisaka Motohiro Hata Nishi-ken Ado chronology Kyōgen(2022) Uta's Songs: One Piece Film Red(2022) Ado no Utattemita Album(2023) Singles from Uta's Songs...
Drs.Teten MasdukiMenteri Koperasi dan Usaha Kecil dan Menengah Indonesia ke-11PetahanaMulai menjabat 23 Oktober 2019PresidenJoko WidodoPendahuluAnak Agung Gede Ngurah PuspayogaKepala Staf Kepresidenan Indonesia ke-2Masa jabatan2 September 2015 – 17 Januari 2018PresidenJoko WidodoPendahuluLuhut Binsar PanjaitanPenggantiMoeldokoKetua ICWMasa jabatan1998 – 2008 Informasi pribadiLahir6 Mei 1963 (umur 60)Garut, Jawa Barat, IndonesiaKebangsaanIndonesiaPartai p...
World War II British comedy song For the theories about Adolf Hitler's testicles, see Possible monorchism of Adolf Hitler. Hitler Has Only Got One BallSongWrittenc. 1939GenreNovelty songComposer(s)Lieutenant F. J. Ricketts as Colonel Bogey MarchLyricist(s)Unknown Hitler Has Only Got One Ball, sometimes known as The River Kwai March, is a World War II British song, the lyrics of which, sung to the tune of the World War I-era Colonel Bogey March, impugn the masculinity of Nazi leaders by allegi...
1973 novel by Tom Sharpe Indecent Exposure First editionAuthorTom SharpeCountryUnited KingdomLanguageEnglishPublisherSecker & WarburgPublication date1973Pages248ISBN0-436-45801-2Preceded byRiotous Assembly Followed byPorterhouse Blue Indecent Exposure is a satirical novel by British writer Tom Sharpe, originally published in 1973. The sequel to Riotous Assembly, the author's debut novel, this story also lampoons the South African police under apartheid.[1] Plo...
Ириновский проспект Вид с улицы Коммуны, март 2008 г. Общая информация Страна Россия Город Санкт-Петербург Район Красногвардейский Исторический район Жерновка,Ржевка-Пороховые,Пороховые Протяжённость ≈ 2500 м Метро Ладожская Прежние названия 4-я Жерновская улица (части...
Indian politician and gangster For the pre-partition leader, see Mukhtar Ahmed Ansari. Mukhtar AnsariMukhtar AnsariMember of the Uttar Pradesh Legislative AssemblyIn officeOctober 1996 – March 2022Preceded byNaseemSucceeded byAbbas AnsariConstituencyMau Personal detailsBorn (1963-06-30) 30 June 1963 (age 60)Yusufpur, Uttar Pradesh, India[1]Political partySuheldev Bharatiya Samaj Party (11 Feb 2022-present)Other politicalaffiliationsQuami Ekta DalHeight198 cm (6...
2006 film directed by Ramana For the 2018 Malayalam film, see Aadhi. AthiTheatrical release posterDirected byRamanaWritten byRamanaStory bySurender ReddyBased onAthanokkade (Telugu)Produced byS. A. ChandrasekharShoba ChandrasekharStarringVijayTrishaPrakash RajSai KumarNassarCinematographySoundarrajanEdited bySuresh UrsMusic byVidyasagarProductioncompanyV. V. CreationsRelease date15 January 2006Running time167 minutes[1]CountryIndiaLanguageTamil Aathi (pronunciationⓘ) or known as Aad...
Fمعلومات عامةجزء من إخطاطة لاتينيةPolish alphabet (en) أبجدية إنجليزية صور من قبل ⠋ الرمز F..-.Foxtrot تعديل - تعديل مصدري - تعديل ويكي بيانات تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوقة. من الممكن التشكي...