Perfect fifth

Perfect fifth
Equal tempered
Just
perfect fifth
Inverseperfect fourth
Name
Other namesdiapente
AbbreviationP5
Size
Semitones7
Interval class5
Just interval3:2
Cents
12-Tone equal temperament700
Just intonation701.955[1]
The perfect fifth with two strings
  { <<
 \new Staff \with{ \magnifyStaff #4/3 } \relative c' { 
  \key c \major \clef treble \override Score.TimeSignature #'stencil = ##f \time 3/4
   <g' d'> <b fis'> <d, a'>
}
 \new Staff \with{ \magnifyStaff #4/3 } \relative c' { 
  \key c \major \clef bass \override Score.TimeSignature #'stencil = ##f \time 3/4
   <c, g'> <a e'> <f' c'>
} >> }
Examples of perfect fifth intervals

In music theory, a perfect fifth is the musical interval corresponding to a pair of pitches with a frequency ratio of 3:2, or very nearly so.

In classical music from Western culture, a fifth is the interval from the first to the last of the first five consecutive notes in a diatonic scale.[2] The perfect fifth (often abbreviated P5) spans seven semitones, while the diminished fifth spans six and the augmented fifth spans eight semitones. For example, the interval from C to G is a perfect fifth, as the note G lies seven semitones above C.

The perfect fifth may be derived from the harmonic series as the interval between the second and third harmonics. In a diatonic scale, the dominant note is a perfect fifth above the tonic note.

The perfect fifth is more consonant, or stable, than any other interval except the unison and the octave. It occurs above the root of all major and minor chords (triads) and their extensions. Until the late 19th century, it was often referred to by one of its Greek names, diapente.[3] Its inversion is the perfect fourth. The octave of the fifth is the twelfth.

A perfect fifth is at the start of "Twinkle, Twinkle, Little Star"; the pitch of the first "twinkle" is the root note and the pitch of the second "twinkle" is a perfect fifth above it.

Alternative definitions

The term perfect identifies the perfect fifth as belonging to the group of perfect intervals (including the unison, perfect fourth, and octave), so called because of their simple pitch relationships and their high degree of consonance.[4] When an instrument with only twelve notes to an octave (such as the piano) is tuned using Pythagorean tuning, one of the twelve fifths (the wolf fifth) sounds severely discordant and can hardly be qualified as "perfect", if this term is interpreted as "highly consonant". However, when using correct enharmonic spelling, the wolf fifth in Pythagorean tuning or meantone temperament is actually not a perfect fifth but a diminished sixth (for instance G–E).

Perfect intervals are also defined as those natural intervals whose inversions are also natural, where natural, as opposed to altered, designates those intervals between a base note and another note in the major diatonic scale starting at that base note (for example, the intervals from C to C, D, E, F, G, A, B, C, with no sharps or flats); this definition leads to the perfect intervals being only the unison, fourth, fifth, and octave, without appealing to degrees of consonance.[5]

The term perfect has also been used as a synonym of just, to distinguish intervals tuned to ratios of small integers from those that are "tempered" or "imperfect" in various other tuning systems, such as equal temperament.[6][7] The perfect unison has a pitch ratio 1:1, the perfect octave 2:1, the perfect fourth 4:3, and the perfect fifth 3:2.

Within this definition, other intervals may also be called perfect, for example a perfect third (5:4)[8] or a perfect major sixth (5:3).[9]

Other qualities

In addition to perfect, there are two other kinds, or qualities, of fifths: the diminished fifth, which is one chromatic semitone smaller, and the augmented fifth, which is one chromatic semitone larger. In terms of semitones, these are equivalent to the tritone (or augmented fourth), and the minor sixth, respectively.

Pitch ratio

Just perfect fifth on D. The perfect fifth above D (A+, 27/16) is a syntonic comma (81/80 or 21.5 cents) higher than the just major sixth above middle C: (A, 5/3).[10]
Just perfect fifth below A. The perfect fifth below A (D-, 10/9) is a syntonic comma lower than the just/Pythagorean major second above middle C: (D, 9/8).[10]

The justly tuned pitch ratio of a perfect fifth is 3:2 (also known, in early music theory, as a hemiola),[11][12] meaning that the upper note makes three vibrations in the same amount of time that the lower note makes two. The just perfect fifth can be heard when a violin is tuned: if adjacent strings are adjusted to the exact ratio of 3:2, the result is a smooth and consonant sound, and the violin sounds in tune.

Keyboard instruments such as the piano normally use an equal-tempered version of the perfect fifth, enabling the instrument to play in all keys. In 12-tone equal temperament, the frequencies of the tempered perfect fifth are in the ratio or approximately 1.498307. An equally tempered perfect fifth, defined as 700 cents, is about two cents narrower than a just perfect fifth, which is approximately 701.955 cents.

Kepler explored musical tuning in terms of integer ratios, and defined a "lower imperfect fifth" as a 40:27 pitch ratio, and a "greater imperfect fifth" as a 243:160 pitch ratio.[13] His lower perfect fifth ratio of 1.48148 (680 cents) is much more "imperfect" than the equal temperament tuning (700 cents) of 1.4983 (relative to the ideal 1.50). Hermann von Helmholtz uses the ratio 301:200 (708 cents) as an example of an imperfect fifth; he contrasts the ratio of a fifth in equal temperament (700 cents) with a "perfect fifth" (3:2), and discusses the audibility of the beats that result from such an "imperfect" tuning.[14]

Use in harmony

W. E. Heathcote describes the octave as representing the prime unity within the triad, a higher unity produced from the successive process: "first Octave, then Fifth, then Third, which is the union of the two former".[15] Hermann von Helmholtz argues that some intervals, namely the perfect fourth, fifth, and octave, "are found in all the musical scales known", though the editor of the English translation of his book notes the fourth and fifth may be interchangeable or indeterminate.[16]

The perfect fifth is a basic element in the construction of major and minor triads, and their extensions. Because these chords occur frequently in much music, the perfect fifth occurs just as often. However, since many instruments contain a perfect fifth as an overtone, it is not unusual to omit the fifth of a chord (especially in root position).

The perfect fifth is also present in seventh chords as well as "tall tertian" harmonies (harmonies consisting of more than four tones stacked in thirds above the root). The presence of a perfect fifth can in fact soften the dissonant intervals of these chords, as in the major seventh chord in which the dissonance of a major seventh is softened by the presence of two perfect fifths.

Chords can also be built by stacking fifths, yielding quintal harmonies. Such harmonies are present in more modern music, such as the music of Paul Hindemith. This harmony also appears in Stravinsky's The Rite of Spring in the "Dance of the Adolescents" where four C trumpets, a piccolo trumpet, and one horn play a five-tone B-flat quintal chord.[17]

Bare fifth, open fifth, or empty fifth


{
  \set Staff.midiInstrument = "electric guitar (clean)"
  \omit Score.MetronomeMark \tempo 4=160
  \repeat unfold 16 { <e b e'>8-. } \bar "|."
}
E5 power chord in eighth notes

A bare fifth, open fifth or empty fifth is a chord containing only a perfect fifth with no third. The closing chords of Pérotin's Viderunt omnes and Sederunt Principes, Guillaume de Machaut's Messe de Nostre Dame, the Kyrie in Mozart's Requiem, and the first movement of Bruckner's Ninth Symphony are all examples of pieces ending on an open fifth. These chords are common in Medieval music, sacred harp singing, and throughout rock music. In hard rock, metal, and punk music, overdriven or distorted electric guitar can make thirds sound muddy while the bare fifths remain crisp. In addition, fast chord-based passages are made easier to play by combining the four most common guitar hand shapes into one. Rock musicians refer to them as power chords. Power chords often include octave doubling (i.e., their bass note is doubled one octave higher, e.g. F3–C4–F4).

pacha siku
k'antu

An empty fifth is sometimes used in traditional music, e.g., in Asian music and in some Andean music genres of pre-Columbian origin, such as k'antu and sikuri. The same melody is being led by parallel fifths and octaves during all the piece.

Western composers may use the interval to give a passage an exotic flavor.[18] Empty fifths are also sometimes used to give a cadence an ambiguous quality, as the bare fifth does not indicate a major or minor tonality.

Use in tuning and tonal systems

The just perfect fifth, together with the octave, forms the basis of Pythagorean tuning. A slightly narrowed perfect fifth is likewise the basis for meantone tuning.[citation needed]

The circle of fifths is a model of pitch space for the chromatic scale (chromatic circle), which considers nearness as the number of perfect fifths required to get from one note to another, rather than chromatic adjacency.

See also

References

  1. ^
  2. ^ Don Michael Randel (2003), "Interval", Harvard Dictionary of Music, fourth edition (Cambridge, Massachusetts: Harvard University Press): p. 413.
  3. ^ William Smith; Samuel Cheetham (1875). A Dictionary of Christian Antiquities. London: John Murray. p. 550. ISBN 9780790582290.
  4. ^ Piston, Walter; de Voto, Mark (1987). Harmony (5th ed.). New York, NY: W.W. Norton. p. 15. ISBN 0-393-95480-3. Octaves, perfect intervals, thirds, and sixths are classified as being 'consonant intervals', but thirds and sixths are qualified as 'imperfect consonances'.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  5. ^ Kenneth McPherson Bradley (1908). Harmony and Analysis. C. F. Summy. p. 17.
  6. ^ Charles Knight (1843). Penny Cyclopaedia. Society for the Diffusion of Useful Knowledge. p. 356.
  7. ^ John Stillwell (2006). Yearning for the Impossible. A. K. Peters. p. 21. ISBN 1-56881-254-X. perfect fifth imperfect fifth tempered.
  8. ^ Llewelyn Southworth Lloyd (1970). Music and Sound. Ayer Publishing. p. 27. ISBN 0-8369-5188-3.
  9. ^ John Broadhouse (1892). Musical Acoustics. W. Reeves. p. 277. perfect major sixth ratio.
  10. ^ a b John Fonville (Summer 1991). "Ben Johnston's Extended Just Intonation: A Guide for Interpreters". Perspectives of New Music. 29 (2): 109 (106–137). doi:10.2307/833435. JSTOR 833435.
  11. ^ Willi Apel (1972). "Hemiola, hemiolia". Harvard Dictionary of Music (2nd ed.). Cambridge, Massachusetts: Harvard University Press. p. 382. ISBN 0-674-37501-7.
  12. ^ Randel, Don Michael, ed. (2003). "Hemiola, hemiola". The Harvard Dictionary of Music: Fourth Edition. Harvard Dictionary of Music (4th ed.). Cambridge, Massachusetts: Harvard University Press. p. 389. ISBN 0-674-01163-5.
  13. ^ Johannes Kepler (2004). Stephen Hawking (ed.). Harmonies of the World. Running Press. p. 22. ISBN 0-7624-2018-9.
  14. ^ Hermann von Helmholtz (1912). On the Sensations of Tone as a Physiological Basis for the Theory of Music. Longmans, Green. pp. 199, 313. ISBN 9781419178931. perfect fifth imperfect fifth Helmholtz tempered
  15. ^ W. E. Heathcote (1888), "Introductory Essay", in Moritz Hauptmann, The Nature of Harmony and Metre, translated and edited by W. E. Heathcote (London: Swan Sonnenschein), p. xx.
  16. ^ Hermann von Helmholtz (1912). On the Sensations of Tone as a Physiological Basis for the Theory of Music. Longmans, Green. p. 253. ISBN 9781419178931. perfect fifth imperfect fifth Helmholtz tempered
  17. ^ Piston & DeVoto 1987, pp. 503–505.
  18. ^ Scott Miller, "Inside The King and I", New Line Theatre, accessed December 28, 2012

Read other articles:

Murder victim Murder of Tara Lynn GrantGrant in 2006Date2 March 2007 (2007-03-02) (body discovered)LocationMacomb County, Michigan, U.S.ArrestsStephen GrantSentence50–80 years imprisonment Tara Lynn Grant (28 June 1972 − 9 February 2007) was a married American woman, mother of two children from Macomb County, Michigan, and a successful consultant at Washington Group International. She became nationally known as the victim of murder by her husband, Stephen Grant, in February...

 

See also: 2007 United States gubernatorial elections 2007 Louisiana gubernatorial election ← 2003 October 20, 2007 2011 →   Candidate Bobby Jindal Walter Boasso Party Republican Democratic Popular vote 699,672 226,364 Percentage 53.91% 17.44%   Candidate John Georges Foster Campbell Party Independent Democratic Popular vote 186,800 161,425 Percentage 14.39% 12.44% Parish resultsJindal:      30–40%     ...

 

Dieser Artikel beschreibt die Beleuchtung im technischen Sinn. Siehe auch Beleuchtung (Rätsel) und Beleuchtungsstange. Beleuchtung in einem Bahnhof Außenbeleuchtung des Kölner Doms Der Begriff Beleuchtung bezeichnet die Lichterzeugung mithilfe einer künstlichen Lichtquelle (Beleuchtungsanlage) sowie die folgende Sichtbarmachung von Objekten, die nicht selbst leuchten. Dieses Kunstlicht macht den Menschen unabhängig von natürlichen Lichtquellen (in erster Linie der Sonne) und dient der V...

Wim van Velzen kan verwijzen naar: Wim van Velzen (1938-2020), Nederlands Europarlementariër namens de PvdA Wim van Velzen (1943), Nederlands Europarlementariër en Eerste Kamerlid namens het CDA Bekijk alle artikelen waarvan de titel begint met Wim van Velzen of met Wim van Velzen in de titel. Dit is een doorverwijspagina, bedoeld om de verschillen in betekenis of gebruik van Wim van Velzen inzichtelijk te maken. Op deze pagina staat een uitleg van de verschillende ...

 

Madonna del Sasso Gemeente in Italië Situering Regio Piëmont (PMN) Provincie Verbano-Cusio-Ossola (VB) Coördinaten 45° 48′ NB, 8° 22′ OL Algemeen Oppervlakte 15,3 km² Inwoners (1 januari 2018) 393[1] (30 inw./km²) Hoogte 696 m Overig Postcode 28010 Netnummer 0322 Naam inwoner boletesi ISTAT-code 103040 Foto's Portaal    Italië Madonna del Sasso is een gemeente in de Italiaanse provincie Verbano-Cusio-Ossola (regio Piëmont) en telt 460 inwoners (31-12-200...

 

Broma (kanchō) Kanchō (カンチョー, ''Kanchō''?) es una broma o jugarreta llevada a cabo habitualmente por niños en edad escolar en Japón. Se hace uniendo las manos de manera tal que los dedos índices señalen juntos y tratando de insertarlos bruscamente en la región anal de alguien, cuando la víctima no esté viéndolo.[1]​[2]​ Es similar en espíritu al Wedgie o goosing en Estados Unidos, al Saca-cacas mexicano o al choco-dedo en España. Esta broma ha sido popular e...

  لمعانٍ أخرى، طالع ديفا (توضيح). 43°22′29″N 4°31′07″W / 43.37472153°N 4.51861095°W / 43.37472153; -4.51861095 ديفا     الإحداثيات 43°22′29″N 4°31′07″W / 43.37472153°N 4.51861095°W / 43.37472153; -4.51861095  [1] تقسيم إداري  البلد إسبانيا[2]  التقسيم الأعلى قنطبرية   طول 64 كي...

 

Overview of the various video game consoles released by Nintendo A size comparison of the (top to bottom) Wii (2006), GameCube (2001), Nintendo 64 (1996), North American SNES (1991) and the NES outside of Japan (1985) The Japanese multinational consumer electronics company Nintendo has developed seven home video game consoles and multiple portable consoles for use with external media, as well as dedicated consoles and other hardware for their consoles. As of September 30, 2021[up...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) بطولة أوروبا لكرة الماء 2012 البطولة بطولة أوروبا لكرة الماء رقم الموسم الـ 30 التاريخ 2012 المكان آيندهوفن، ...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2018年2月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 此條目需要擴充。 (2018年2月5日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此...

 

LOTTO Bayern Eisarena Königssee Kunsteisbahn Königssee (Deutschland) Plan der Bahn Ort Deutschland Schönau am Königssee, Bayern Inhaber Landkreis Berchtesgadener Land Betreiber Bob- und Schlittenverband für Deutschland Inbetriebnahme 17. Januar 1960 Bahndaten Maximale Höhendifferenz 135 m Start Länge Kurven Bobstart 1240 m 12 Skeletonstart 1185 m 12 Rennrodelstart Männer-Einsitzer 1306 m 16 Rennrodelstart Frauen-Einsitzer 1156 m 12 Rennrodelstart Doppelsitzer ...

 

Перехідна ліга 1992-93 Подробиці Дата проведення 15 серпня 1992 - 3 липня 1993 Кількість учасників 18 Призові місця  Чемпіон «Нафтохімік» (Кременчук) (1-й раз) Віцечемпіон «Динамо» (Луганськ) Третє місце «Антрацит» (Кіровське) Обмін між лігами Підвищення в класі «Нафтохімік»...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. RizkyInformasi pribadiNama lengkap M. Rizki MirzamahTanggal lahir 31 Juli 1991 (umur 32)Tinggi 1,76 m (5 ft 9+1⁄2 in)Posisi bermain Gelandang Bertahan [1]Informasi klubKlub saat ini Barito PutraNomor 11Karier senior*T...

 

Austrian sportsman Arthur von Pongracz in 1901 Arthur von Pongrácz de Szent-Miklós und Óvár, Hungarian: szentmiklósi és óvári (gróf, báró, ill. nemes) Pongrácz [hu] Artúr (25 June 1864, Biala, Austrian Empire – 13 January 1942, Vienna) was an Austrian equestrian rider.[1] He competed in Dressage at the 1924, 1928, and 1936 Summer Olympics, with his best performance being 4th place in Men's Team Dressage in 1936 and 6th place in Men's Individual Dressage in ...

 

Chemical compound PesampatorClinical dataOther namesBIIB-104; PF-04958242Identifiers IUPAC name N-[(3S,4S)-4-[4-(5-cyanothiophen-2-yl)phenoxy]oxolan-3-yl]propane-2-sulfonamide CAS Number1258963-59-5PubChem CID49853967ChemSpider32698813UNII9G1A824CC2Chemical and physical dataFormulaC18H20N2O4S2Molar mass392.49 g·mol−13D model (JSmol)Interactive image SMILES CC(C)S(=O)(=O)N[C@H]1COC[C@H]1OC2=CC=C(C=C2)C3=CC=C(S3)C#N InChI InChI=1S/C18H20N2O4S2/c1-12(2)26(21,22)20-16-10-23-11-17(16)24-14...

Japanese manga series by Fujiko F. Fujio This article is about the Japanese manga and anime. For the Indonesian general, see Siswondo Parman. PermanCover of the second manga volume featuring Booby (left), Mitsuo Suwa (center), and Sumire Hoshino (right) in their Perman personas.パーマン(Pāman)GenreSuperheroCreated byFujiko Fujio MangaWritten byFujiko FujioPublished byShogakukanMagazineWeekly Shōnen Sunday etc.DemographicShōnenOriginal run1966 – 1986Volumes8 Anime telev...

 

Mountain in Nepal NubtseNubtse from Kala PattharHighest pointElevation7,861 m (25,791 ft)Prominence319 m (1,047 ft)ListingList of mountains in NepalCoordinates27°57′59″N 86°53′24″E / 27.9664°N 86.89°E / 27.9664; 86.89NamingNative nameནུབ་རྩེ། नुबचे (Sherpa)English translationWest PeakGeographyNubtseSolukhumbu District, Sagarmatha Zone, NepalShow map of Koshi ProvinceNubtseNubtse (Nepal)Show map of Nepa...

 

For other yachts with similar names, see Shamrock (disambiguation) § Nautical. ShamrockShamrock and Columbia in 1899Yacht club Royal Ulster Yacht ClubNation United KingdomDesigner(s)William Fife IIIBuilderJ. Thorneycroft & Co.Launched26 June 1899Owner(s)Sir Thomas LiptonRacing careerSkippersCaptain Archibald Archie HogarthAmerica's Cup1899SpecificationsDisplacement156.9 metric tonnesLength38.86 m (127.5 ft) (LOA)25.12 m (82.4 ft) (LWL)Beam7.46 m (2...

Historic site in Queensland, AustraliaCraigellachieStreet front, 2015Location10 Fosbery Street, Windsor, City of Brisbane, Queensland, AustraliaCoordinates27°25′40″S 153°02′01″E / 27.4277°S 153.0336°E / -27.4277; 153.0336Design period1870s - 1890s (late 19th century)Builtc. 1889Built forJohn Grant Queensland Heritage RegisterOfficial nameCraigellachieTypestate heritage (built)Designated21 October 1992Reference no.600348Significant period1880s-189...

 

Gráfica de la distribución por tamaños de un material granular Arena de una playa, ejemplo de un material granular natural La granulometría es el estudio de la distribución estadística de los tamaños de una colección de elementos de un material sólido fraccionado o de un líquido multifásico. El análisis granulométrico es el conjunto de operaciones cuyo fin es determinar la distribución del tamaño de los elementos que componen una muestra. La distribución del tamaño de las par...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!