The intervals of 5-limit just intonation (prime limit , not odd limit) are ratios involving only the powers of 2, 3, and 5 . The fundamental intervals are the superparticular ratios 2/1 (the octave ), 3/2 (the perfect fifth ) and 5/4 (the major third ). That is, the notes of the major triad are in the ratio 1:5/4:3/2 or 4:5:6.
In all tunings, the major third is equivalent to two major seconds . However, because just intonation does not allow the irrational ratio of √5 /2, two different frequency ratios are used: the major tone (9/8) and the minor tone (10/9).
The intervals within the diatonic scale are shown in the table below.
List
Names
Ratio
Cents
12ET interval (in cents)
Definition
53ET interval (in Holdrian commas )
53ET interval (in cents)
Arel-Ezgi-Uzdilek notation (a 53ET-based notation)
Complement
unison
1/1
0.00
0
0
0
octave
syntonic comma
81/80
21.51
0
c or T − t
1
22.64
semi-diminished octave
diesis diminished second
128/125
41.06
0
D or S − x
2
45.28
augmented seventh
lesser chromatic semitone minor semitone augmented unison
25/24
70.67
100
x or t − S or T − L
3
67.92
diminished octave
Pythagorean minor second Pythagorean limma
256/243
90.22
100
Λ
4
90.57
Pythagorean major seventh
greater chromatic semitone wide augmented unison
135/128
92.18
100
X or T − S
4
90.57
narrow diminished octave
major semitone limma minor second
16/15
111.73
100
S
5
113.21
major seventh
large limma acute minor second
27/25
133.24
100
L or S + c or T − x
6
135.85
grave major seventh
grave tone grave major second
800/729
160.90
200
τ or Λ + x or t − c
7
158.49
acute minor seventh
minor tone lesser major second
10/9
182.40
200
t
8
181.13
minor seventh
major tone Pythagorean major second greater major second
9/8
203.91
200
T or t + c
9
203.77
Pythagorean minor seventh
diminished third
256/225
223.46
200
S + S
10
226.42
augmented sixth
semi-augmented second
125/108
253.08
300
t + x
11
249.06
semi-augmented sixth
augmented second
75/64
274.58
300
T + x
12
271.70
diminished seventh
Pythagorean minor third
32/27
294.13
300
T + Λ
13
294.34
Pythagorean major sixth
minor third
6/5
315.64
300
T + S
14
316.98
major sixth
acute minor third
243/200
333.18
300
T + L
15
339.62
grave major sixth
grave major third
100/81
364.81
400
T + τ
16
362.26
acute minor sixth
major third
5/4
386.31
400
T + t
17
384.91
minor sixth
Pythagorean major third
81/64
407.82
400
T + T
18
407.55
Pythagorean minor sixth
classic diminished fourth
32/25
427.37
400
T + S + S
19
430.19
classic augmented fifth
classic augmented third
125/96
456.99
500
T + t + x
20
452.83
classic diminished sixth
wide augmented third
675/512
478.49
500
T + t + X
21
475.47
narrow diminished sixth
perfect fourth
4/3
498.04
500
T + t + S
22
498.11
perfect fifth
acute fourth[ 1]
27/20
519.55
500
T + t + L
23
520.75
grave fifth
classic augmented fourth
25/18
568.72
600
T + t + t
25
566.04
classic diminished fifth
augmented fourth
45/32
590.22
600
T + t + T
26
588.68
diminished fifth
diminished fifth
64/45
609.78
600
T + t + S + S
27
611.32
augmented fourth
classic diminished fifth
36/25
631.29
600
T + t + S + L
28
633.96
classic augmented fourth
grave fifth[ 1]
40/27
680.45
700
T + t + S + t
30
679.25
acute fourth
perfect fifth
3/2
701.96
700
T + t + S + T
31
701.89
perfect fourth
narrow diminished sixth
1024/675
721.51
700
T + t + S + S + S
32
724.53
wide augmented third
classic diminished sixth
192/125
743.01
700
T + t + S + L + S
33
747.17
classic augmented third
classic augmented fifth
25/16
772.63
800
T + t + S + T + x
34
769.81
classic diminished fourth
Pythagorean minor sixth
128/81
792.18
800
T + t + S + T + Λ
35
792.45
Pythagorean major third
minor sixth
8/5
813.69
800
(T + t + S + T) + S
36
815.09
major third
acute minor sixth
81/50
835.19
800
(T + t + S + T) + L
37
837.74
grave major third
grave major sixth
400/243
862.85
900
(T + t + S + T) + τ
38
862.85
acute minor third
major sixth
5/3
884.36
900
(T + t + S + T) + t
39
883.02
minor third
Pythagorean major sixth
27/16
905.87
900
(T + t + S + T) + T
40
905.66
Pythagorean minor third
diminished seventh
128/75
925.42
900
(T + t + S + T) + S + S
41
928.30
augmented second
semi-augmented sixth[ 1]
216/125
946.92
800
(T + t + S + T) + S + L
42
946.92
semi-augmented second
augmented sixth
225/128
976.54
1000
(T + t + S + T) + T + x
43
973.58
diminished third
lesser minor seventhPythagorean minor seventh
16/9
996.09
1000
(T + t + S + T) + T + Λ
44
996.23
greater major second Pythagorean major second
greater minor seventh
9/5
1017.60
1000
(T + t + S + T) + T + S
45
1018.87
lesser major second
acute minor seventh
729/400
1039.10
1000
(T + t + S + T) + T + L
46
1041.51
grave major second
grave major seventh
50/27
1066.76
1100
(T + t + S + T) + T + τ
47
1064.15
acute minor second
major seventh
15/8
1088.27
1100
(T + t + S + T) + T + t
48
1086.79
minor second
narrow diminished octave
256/135
1107.82
1100
(T + t + S + T) + t + S + S
49
1109.43
wide augmented unison
Pythagorean major seventh
243/128
1109.78
1100
(T + t + S + T) + T + T
49
1109.43
Pythagorean minor second
diminished octave
48/25
1129.33
1100
(T + t + S + T) + T + S + S
50
1132.08
augmented unison
augmented seventh
125/64
1158.94
1200
(T + t + S + T) + T + t + x
51
1154.72
diminished second
semi-diminished octave
160/81
1178.49
1200
(T + t + S + T) + T + t + x + c
52
1177.36
syntonic comma
octave
2/1
1200.00
1200
(T + t + S + T) + (T + t + S)
53
1200.00
unison
(The Pythagorean minor second is found by adding 5 perfect fourths.)
The table below shows how these steps map to the first 31 scientific harmonics, transposed into a single octave.
Harmonic
Musical Name
Ratio
Cents
12ET Cents
53ET Commas
53ET Cents
1
unison
1/1
0.00
0
0
0.00
2
octave
2/1
1200.00
1200
53
1200.00
3
perfect fifth
3/2
701.96
700
31
701.89
5
major third
5/4
386.31
400
17
384.91
7
augmented sixth§
7/4
968.83
1000
43
973.58
9
major tone
9/8
203.91
200
9
203.77
11
major fourth
11/8
551.32
500 or 600
24
543.40
13
acute minor sixth§
13/8
840.53
800
37
837.74
15
major seventh
15/8
1088.27
1100
48
1086.79
17
limma§
17/16
104.96
100
5
113.21
19
Pythagorean minor third§
19/16
297.51
300
13
294.34
21
wide augmented third§
21/16
470.78
500
21
475.47
23
classic diminished fifth§
23/16
628.27
600
28
633.96
25
classic augmented fifth
25/16
772.63
800
34
769.81
27
Pythagorean major sixth
27/16
905.87
900
40
905.66
29
minor seventh§
29/16
1029.58
1000
45
1018.87
31
augmented seventh§
31/16
1145.04
1100
51
1154.72
§ These intervals also appear in the upper table, although with different ratios.
See also
References
Twelve- semitone (post-Bach Western)
(Numbers in brackets are the number ofsemitones in the interval.)
Other tuning systems
Other intervals
Groups Semitones Quarter tones Commas Measurement Others