Nested dissection

In numerical analysis, nested dissection is a divide and conquer heuristic for the solution of sparse symmetric systems of linear equations based on graph partitioning. Nested dissection was introduced by George (1973); the name was suggested by Garrett Birkhoff.[1]

Nested dissection consists of the following steps:

  • Form an undirected graph in which the vertices represent rows and columns of the system of linear equations, and an edge represents a nonzero entry in the sparse matrix representing the system.
  • Recursively partition the graph into subgraphs using separators, small subsets of vertices the removal of which allows the graph to be partitioned into subgraphs with at most a constant fraction of the number of vertices.
  • Perform Cholesky decomposition (a variant of Gaussian elimination for symmetric matrices), ordering the elimination of the variables by the recursive structure of the partition: each of the two subgraphs formed by removing the separator is eliminated first, and then the separator vertices are eliminated.

As a consequence of this algorithm, the fill-in (the set of nonzero matrix entries created in the Cholesky decomposition that are not part of the input matrix structure) is limited to at most the square of the separator size at each level of the recursive partition. In particular, for planar graphs (frequently arising in the solution of sparse linear systems derived from two-dimensional finite element method meshes) the resulting matrix has O(n log n) nonzeros, due to the planar separator theorem guaranteeing separators of size O(n).[2] For arbitrary graphs there is a nested dissection that guarantees fill-in within a factor of optimal, where d is the maximum degree and m is the number of non-zeros. [3]

See also

  • Cycle rank of a graph, or a symmetric Boolean matrix, measures the minimum parallel time needed to perform Cholesky decomposition
  • Vertex separator

Notes

References

  • George, J. Alan (1973), "Nested dissection of a regular finite element mesh", SIAM Journal on Numerical Analysis, 10 (2): 345–363, doi:10.1137/0710032, JSTOR 2156361.
  • Gilbert, John R. (1988), "Some nested dissection order is nearly optimal", Information Processing Letters, 26 (6): 325–328, doi:10.1016/0020-0190(88)90191-3, hdl:1813/6607.
  • Gilbert, John R.; Tarjan, Robert E. (1986), "The analysis of a nested dissection algorithm", Numerische Mathematik, 50 (4): 377–404, doi:10.1007/BF01396660.
  • Lipton, Richard J.; Rose, Donald J.; Tarjan, Robert E. (1979), "Generalized nested dissection", SIAM Journal on Numerical Analysis, 16 (2): 346–358, doi:10.1137/0716027, JSTOR 2156840.
  • Agrawal, Ajit; Klein, Philip; Ravi, R. (1993), "Cutting down on Fill Using Nested Dissection: Provably Good Elimination Orderings", Graph Theory and Sparse Matrix Computation, The IMA Volumes in Mathematics and its Applications, vol. 56, Springer New York, pp. 31–55, doi:10.1007/978-1-4613-8369-7_2, ISBN 978-1-4613-8371-0.

Read other articles:

Mouth & MacNeal Información profesionalAños activo desde 1971Género Pop Discográficas Durium Marche EstereLondon RecordsUnited Artists Records [editar datos en Wikidata] Mouth & MacNeal fue un dúo de pop holandés de corta vida, en actividad entre 1971 y 1974. El dúo estuvo conformado por Willem Mouth Duyn y Maggie MacNeal. Son conocidos principalmente por haber vendido un millón de ejemplares de su canción How Do You Do de 1971,[1]​ y por su participación en ...

 

Gift Muzadzi Informações pessoais Nome completo Gift Muzadzi Data de nascimento 2 de outubro de 1972 (51 anos) Local de nascimento Salisbury, Rodésia Informações profissionais Posição Goleiro Clubes profissionais Anos Clubes Jogos e gol(o)s Darryn Textiles FC Seleção nacional 1997-2006  Zimbabwe 12 (0) Gift Muzadzi (Salisbury, atual Harare, 2 de outubro de 1972) é um ex-futebolista profissional zimbabuano que atuava como goleiro. Carreira Gift Muzadzi representou o el...

 

Unofficial title of the wife of the president of Portugal. First Lady of PortugalPrimeira-dama de PortugalCoat of Arms of the Portuguese RepublicIncumbentRita Amaral Cabralsince 9 March 2016ResidenceBelém PalaceTerm length5 Years (10 years if the President wins re-election)Inaugural holderLucrécia de ArriagaFormation24 August 1911WebsitePresidency of the Portuguese Republic - First Lady (defunct) First Lady of Portugal (Portuguese: primeira-dama) is the unofficial title attributed to t...

Штат Західна Вірджинія Прапор Печатка Прізвисько: Гірський Штат(англ. Mountain State) Девіз: Montani semper liberi (Гірці завжди вільні) Карта США з відміченим штатом Західна ВірджиніяОфіційна мова немаєСтолиця(і найбільше місто) ЧарлстонПлоща 62 755 км² (41ий)  • Ширина 210 км 

 

Es krim ceriEs krim kerucut ceriJenisEs krimSajianHidangan penutupSuhu penyajianBekuBahan utamaCeri, susu, krim, gula  Media: Es krim ceri Es krim ceri adalah sebuah rasa es krim umum, yang disiapkan memakai bahan es krim khas dan ceri. Berbagai jenis ceri dan ceri tanam dipakai. Di Amerika Serikat, dimana rasa tersebut menjadi populer, hidangan tersebut telah diproduksi massal sejak setidaknya 1917. Ikhtisar Es krim ceri adalah rasa es krim umum di Amerika Serikat yang terdiri dari ...

 

Комітет Верховної Ради України з питань бюджету — утворений 29 серпня 2019 у Верховній Раді України IX скликання[1] Зміст 1 Предмет відання 2 Склад VII скликання[2] 3 Склад VIII скликання[4] 4 Склад IX скликання[6] 5 Див. також 6 Примітки 7 Посилання Предмет відання Предметом віданн

Kabupaten Lanny JayaKabupaten LambangPetaKabupaten Lanny JayaPetaTampilkan peta Maluku dan PapuaKabupaten Lanny JayaKabupaten Lanny Jaya (Indonesia)Tampilkan peta IndonesiaKoordinat: 3°54′45″S 138°17′16″E / 3.91244°S 138.28766°E / -3.91244; 138.28766Negara IndonesiaProvinsiPapua PegununganTanggal berdiri4 Januari 2008Dasar hukumUU Nomor 5 Tahun 2008Ibu kotaTiomJumlah satuan pemerintahan Daftar Distrik: 40Kelurahan: 1Kampung: 355 Pemerintahan •&#...

 

Олександр АндрійовичЦицович  Генерал-лейтенантЗагальна інформаціяНародження 7 жовтня 1853(1853-10-07)Омськ, Російська імперіяНаціональність чорногорецьВійськова службаРоки служби 1917–1918Приналежність Російська імперія→ УНР→ Українська ДержаваВид ЗС  Армія УНР...

 

Untersberg live Hörfunksender (privat) Programmtyp Lokalradio Empfang analog terrestrisch Empfangsgebiet Berchtesgadener Land Betrieb 1. Aug. 2002 bis 1. Jan. 2009 Eigentümer Lokalradio Berchtesgadener Land GmbH und Co. KG Geschäftsführer Dietmar Nagelmüller Programmchef Dietmar Nagelmüller Liste von Hörfunksendern Untersberg live war ein privater Hörfunksender aus Freilassing. Das Unternehmen firmierte unter der offiziellen Bezeichnung Lokalradio Berchtesgadener Land GmbH &...

The first state reptile: Oklahoma's common collared lizard Twenty-eight U.S. states have named an official state reptile. As with other state symbols, states compare admirable aspects of the reptile and of the state, within designating statutes. Schoolchildren often start campaigns promoting their favorite reptile to encourage state legislators to enact it as a state symbol. Many secretaries of state maintain educational web pages that describe the state reptile. Oklahoma was the first state ...

 

Young Trudeau: 1919-1944: Son of Quebec, Father of Canada (short title: Young Trudeau) is the intellectual biography of the former Prime Minister of Canada, Pierre Trudeau that deals with his parents, childhood, and education in the province of Quebec from his birth in 1919 until November 1944 when he left to study at Harvard University. Published in 2006 by Douglas Gibson Books (ISBN 0-7710-6749-6), the book was written by retired professors Max and Monique Nemni, friends and admirers o...

 

Bhumibol BridgeKoordinat13°39′55″N 100°32′22″E / 13.66528°N 100.53944°E / 13.66528; 100.53944MelintasiSungai Chao PhrayaLokalBangkok, ThailandNama resmiBhumibol BridgeNama lainJembatan Industrial Ring Road, Jembatan MegaKarakteristikDesainjembatan kabel-tetapPanjang total702 m and 582 mBentang terpanjang326 m and 398 mSejarahDibuka5 Desember 2006Lokasi Jembatan Bhumibol (bahasa Thai: สะพานภูมิพล), juga dikenal sebagai Jembatan Indu...

Award of the House of Romanov This article is about the Russian order established in 1929. For other uses, see Order of Saint Nicholas Thaumaturgus (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Order of Saint Nicholas the Wonderworker – news · newspapers · books · scholar · JSTOR (October...

 

Questa voce sull'argomento Napoli è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. ForcellaStemma del sedile di Forcella, di ignoto scultore napoletano (XVI secolo), situato nel Museo diocesano di Napoli, che ricorda il simbolo iniziatico della «Y pitagorica», cioè una forcella raffigurante il bivio ideale tra i sentieri del vizio e della virtù,[1] trasfusa nella forma urbana dell'omonimo qu...

 

Serie C 1948-1949 Competizione Serie C Sport Calcio Edizione 11ª Organizzatore Lega Nazionale Date dal 19 settembre 1948al 17 luglio 1949 Luogo  Italia Partecipanti 82 Formula 4 gironi all'italiana Risultati Vincitore Fanfulla (2º titolo)Udinese (1º titolo)Prato (2º titolo)Catania (3º titolo)[1] Retrocessioni VigevanoViareggioMagentaMontebellunaCenteseMasseseSestri LevantePotenzaAvellino[2]SuzzaraGubbio Statistiche Miglior marcatore Renato Fioravanti (1...

This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (August 2016) Cyclic microcellular foaming refers to the solid-state Microcellular plastic manufacturing technique in which the polymer is foamed sequentially. The concept was first introduced in a research article in peer-reviewed international journal, Materials Letters[1] on Acrylonitrile butadiene styrene as the base Polymer...

 

JuramaiaTemporal range: Late Jurassic, 160.89–160.25 Ma PreꞒ Ꞓ O S D C P T J K Pg N ↓ Restoration Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Clade: Eutheria Genus: †JuramaiaLuo et al., 2011 Species †J. sinensis Luo et al., 2011 (type) Juramaia is the earliest known eutherian mammal. It is a small shrew-like mammal of body length about 70–100 mm. It is an extinct genus from the Upper Jurassic deposits of western Liaoni...

 

Pour les articles homonymes, voir Chalon. Pour les autres membres de la famille, voir Maison de Chalon-Arlay. Philibert de Chalon Sanguine du prince d'Orange, dans le recueil de Béthune Titre prince d'Orange (1502-1530) Autres titres seigneur de Arlay et de Nozeroy. Arme cavalerie Grade militaire Capitaine général Années de service 1529 - 1530 Conflits Septième guerre d'Italie Distinctions Ordre de la toison d'or Biographie Dynastie maison de Chalon-Arlay Naissance 18 mars 1502Lons-le-S...

瓦雷讷-沃泽勒Varennes-Vauzelles 法國城市上:瓦雷讷-沃泽勒境内的铁路维修中心;左下:一处民居;右下:火车头环岛 圖章瓦雷讷-沃泽勒的位置 瓦雷讷-沃泽勒在法国的位置显示法国的地图瓦雷讷-沃泽勒在涅夫勒省的位置显示涅夫勒省的地图坐标:47°00′44″N 3°08′47″E / 47.0122°N 3.1464°E / 47.0122; 3.1464国家 法國大区 勃艮第-弗朗什-孔泰大区省 ...

 

Za ostale upotrebe, v. Дрлупа (razvrstavanje). Дрлупа Основни подаци Држава Србија Управни округ Рашки Град Краљево Становништво Становништво (2011) 143 Положај Координате 43°48′12″N 20°49′50″E / 43.8033°N 20.8306°E / 43.8033; 20.8306 Временска зона средњоевропска: UTC+1 Надморска висина 354 m ДрлупаДр...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!