The Monte Carlo method, which uses random sampling for deterministic problems which are difficult or impossible to solve using other approaches, dates back to the 1940s.[6] In his 1987 PhD thesis, Bruce Abramson combined minimax search with an expected-outcome model based on random game playouts to the end, instead of the usual static evaluation function. Abramson said the expected-outcome model "is shown to be precise, accurate, easily estimable, efficiently calculable, and domain-independent."[7] He experimented in-depth with tic-tac-toe and then with machine-generated evaluation functions for Othello and chess.
Such methods were then explored and successfully applied to heuristic search in the field of automated theorem proving by W. Ertel, J. Schumann and C. Suttner in 1989,[8][9][10] thus improving the exponential search times of uninformed search algorithms such as e.g. breadth-first search, depth-first search or iterative deepening.
In 1992, B. Brügmann employed it for the first time in a Go-playing program.[11] In 2002, Chang et al.[12] proposed the idea of "recursive rolling out and backtracking" with "adaptive" sampling choices in their Adaptive Multi-stage Sampling (AMS) algorithm for the model of Markov decision processes. AMS was the first work to explore the idea of UCB-based exploration and exploitation in constructing sampled/simulated (Monte Carlo) trees and was the main seed for UCT (Upper Confidence Trees).[13]
Monte Carlo tree search (MCTS)
In 2006, inspired by these predecessors,[15]Rémi Coulom described the application of the Monte Carlo method to game-tree search and coined the name Monte Carlo tree search,[16] L. Kocsis and Cs. Szepesvári developed the UCT (Upper Confidence bounds applied to Trees) algorithm,[17] and S. Gelly et al. implemented UCT in their program MoGo.[18] In 2008, MoGo achieved dan (master) level in 9×9 Go,[19] and the Fuego program began to win against strong amateur players in 9×9 Go.[20]
In January 2012, the Zen program won 3:1 in a Go match on a 19×19 board with an amateur 2 dan player.[21]Google Deepmind developed the program AlphaGo, which in October 2015 became the first Computer Go program to beat a professional human Go player without handicaps on a full-sized 19x19 board.[1][22][23] In March 2016, AlphaGo was awarded an honorary 9-dan (master) level in 19×19 Go for defeating Lee Sedol in a five-game match with a final score of four games to one.[24] AlphaGo represents a significant improvement over previous Go programs as well as a milestone in machine learning as it uses Monte Carlo tree search with artificial neural networks (a deep learning method) for policy (move selection) and value, giving it efficiency far surpassing previous programs.[25]
The focus of MCTS is on the analysis of the most promising moves, expanding the search tree based on random sampling of the search space.
The application of Monte Carlo tree search in games is based on many playouts, also called roll-outs. In each playout, the game is played out to the very end by selecting moves at random. The final game result of each playout is then used to weight the nodes in the game tree so that better nodes are more likely to be chosen in future playouts.
The most basic way to use playouts is to apply the same number of playouts after each legal move of the current player, then choose the move which led to the most victories.[11] The efficiency of this method—called Pure Monte Carlo Game Search—often increases with time as more playouts are assigned to the moves that have frequently resulted in the current player's victory according to previous playouts. Each round of Monte Carlo tree search consists of four steps:[37]
Selection: Start from root R and select successive child nodes until a leaf node L is reached. The root is the current game state and a leaf is any node that has a potential child from which no simulation (playout) has yet been initiated. The section below says more about a way of biasing choice of child nodes that lets the game tree expand towards the most promising moves, which is the essence of Monte Carlo tree search.
Expansion: Unless L ends the game decisively (e.g. win/loss/draw) for either player, create one (or more) child nodes and choose node C from one of them. Child nodes are any valid moves from the game position defined by L.
Simulation: Complete one random playout from node C. This step is sometimes also called playout or rollout. A playout may be as simple as choosing uniform random moves until the game is decided (for example in chess, the game is won, lost, or drawn).
Backpropagation: Use the result of the playout to update information in the nodes on the path from C to R.
This graph shows the steps involved in one decision, with each node showing the ratio of wins to total playouts from that point in the game tree for the player that the node represents.[38] In the Selection diagram, black is about to move. The root node shows there are 11 wins out of 21 playouts for white from this position so far. It complements the total of 10/21 black wins shown along the three black nodes under it, each of which represents a possible black move. Note that this graph does not follow the UCT algorithm described below.
If white loses the simulation, all nodes along the selection incremented their simulation count (the denominator), but among them only the black nodes were credited with wins (the numerator). If instead white wins, all nodes along the selection would still increment their simulation count, but among them only the white nodes would be credited with wins. In games where draws are possible, a draw causes the numerator for both black and white to be incremented by 0.5 and the denominator by 1. This ensures that during selection, each player's choices expand towards the most promising moves for that player, which mirrors the goal of each player to maximize the value of their move.
Rounds of search are repeated as long as the time allotted to a move remains. Then the move with the most simulations made (i.e. the highest denominator) is chosen as the final answer.
Pure Monte Carlo game search
This basic procedure can be applied to any game whose positions necessarily have a finite number of moves and finite length. For each position, all feasible moves are determined: k random games are played out to the very end, and the scores are recorded. The move leading to the best score is chosen. Ties are broken by fair coin flips. Pure Monte Carlo Game Search results in strong play in several games with random elements, as in the game EinStein würfelt nicht!. It converges to optimal play (as k tends to infinity) in board filling games with random turn order, for instance in the game Hex with random turn order.[39] DeepMind's AlphaZero replaces the simulation step with an evaluation based on a neural network.[2]
Exploration and exploitation
The main difficulty in selecting child nodes is maintaining some balance between the exploitation of deep variants after moves with high average win rate and the exploration of moves with few simulations. The first formula for balancing exploitation and exploration in games, called UCT (Upper Confidence Bound 1 applied to trees), was introduced by Levente Kocsis and Csaba Szepesvári.[17] UCT is based on the UCB1 formula derived by Auer, Cesa-Bianchi, and Fischer[40] and the probably convergent AMS (Adaptive Multi-stage Sampling) algorithm first applied to multi-stage decision-making models (specifically, Markov Decision Processes) by Chang, Fu, Hu, and Marcus.[12] Kocsis and Szepesvári recommend to choose in each node of the game tree the move for which the expression has the highest value. In this formula:
wi stands for the number of wins for the node considered after the i-th move
ni stands for the number of simulations for the node considered after the i-th move
Ni stands for the total number of simulations after the i-th move run by the parent node of the one considered
c is the exploration parameter—theoretically equal to √2; in practice usually chosen empirically
The first component of the formula above corresponds to exploitation; it is high for moves with high average win ratio. The second component corresponds to exploration; it is high for moves with few simulations.
Most contemporary implementations of Monte Carlo tree search are based on some variant of UCT that traces its roots back to the AMS simulation optimization algorithm for estimating the value function in finite-horizon Markov Decision Processes (MDPs) introduced by Chang et al.[12] (2005) in Operations Research. (AMS was the first work to explore the idea of UCB-based exploration and exploitation in constructing sampled/simulated (Monte Carlo) trees and was the main seed for UCT.[13])
Advantages and disadvantages
Although it has been proven that the evaluation of moves in Monte Carlo tree search converges to minimax when using UCT,[17][41] the basic version of Monte Carlo tree search converges only in so called "Monte Carlo Perfect" games.[42] However, Monte Carlo tree search does offer significant advantages over alpha–beta pruning and similar algorithms that minimize the search space.
In particular, pure Monte Carlo tree search does not need an explicit evaluation function. Simply implementing the game's mechanics is sufficient to explore the search space (i.e. the generating of allowed moves in a given position and the game-end conditions). As such, Monte Carlo tree search can be employed in games without a developed theory or in general game playing.
The game tree in Monte Carlo tree search grows asymmetrically as the method concentrates on the more promising subtrees. Thus[dubious – discuss], it achieves better results than classical algorithms in games with a high branching factor.
A disadvantage is that in certain positions, there may be moves that look superficially strong, but that actually lead to a loss via a subtle line of play. Such "trap states" require thorough analysis to be handled correctly, particularly when playing against an expert player; however, MCTS may not "see" such lines due to its policy of selective node expansion.[43][44] It is believed that this may have been part of the reason for AlphaGo's loss in its fourth game against Lee Sedol. In essence, the search attempts to prune sequences which are less relevant. In some cases, a play can lead to a very specific line of play which is significant, but which is overlooked when the tree is pruned, and this outcome is therefore "off the search radar".[45]
Improvements
Various modifications of the basic Monte Carlo tree search method have been proposed to shorten the search time. Some employ domain-specific expert knowledge, others do not.
Monte Carlo tree search can use either light or heavy playouts. Light playouts consist of random moves while heavy playouts apply various heuristics to influence the choice of moves. These heuristics may employ the results of previous playouts (e.g. the Last Good Reply heuristic[46]) or expert knowledge of a given game. For instance, in many Go-playing programs certain stone patterns in a portion of the board influence the probability of moving into that area.[18] Paradoxically, playing suboptimally in simulations sometimes makes a Monte Carlo tree search program play stronger overall.[47]
Domain-specific knowledge may be employed when building the game tree to help the exploitation of some variants. One such method assigns nonzero priors to the number of won and played simulations when creating each child node, leading to artificially raised or lowered average win rates that cause the node to be chosen more or less frequently, respectively, in the selection step.[48] A related method, called progressive bias, consists in adding to the UCB1 formula a element, where bi is a heuristic score of the i-th move.[37]
The basic Monte Carlo tree search collects enough information to find the most promising moves only after many rounds; until then its moves are essentially random. This exploratory phase may be reduced significantly in a certain class of games using RAVE (Rapid Action Value Estimation).[48] In these games, permutations of a sequence of moves lead to the same position. Typically, they are board games in which a move involves placement of a piece or a stone on the board. In such games the value of each move is often only slightly influenced by other moves.
In RAVE, for a given game tree node N, its child nodes Ci store not only the statistics of wins in playouts started in node N but also the statistics of wins in all playouts started in node N and below it, if they contain move i (also when the move was played in the tree, between node N and a playout). This way the contents of tree nodes are influenced not only by moves played immediately in a given position but also by the same moves played later.
When using RAVE, the selection step selects the node, for which the modified UCB1 formula has the highest value. In this formula, and stand for the number of won playouts containing move i and the number of all playouts containing move i, and the function should be close to one and to zero for relatively small and relatively big ni and , respectively. One of many formulas for , proposed by D. Silver,[49] says that in balanced positions one can take , where b is an empirically chosen constant.
Heuristics used in Monte Carlo tree search often require many parameters. There are automated methods to tune the parameters to maximize the win rate.[50]
Monte Carlo tree search can be concurrently executed by many threads or processes. There are several fundamentally different methods of its parallel execution:[51]
Leaf parallelization, i.e. parallel execution of many playouts from one leaf of the game tree.
Root parallelization, i.e. building independent game trees in parallel and making the move basing on the root-level branches of all these trees.
Tree parallelization, i.e. parallel building of the same game tree, protecting data from simultaneous writes either with one, global mutex, with more mutexes, or with non-blocking synchronization.[52]
^Nicholas, Metropolis; Stanislaw, Ulam (1949). "The monte carlo method". Journal of the American Statistical Association. 44 (247): 335–341. doi:10.1080/01621459.1949.10483310. PMID18139350.
^Wolfgang Ertel; Johann Schumann; Christian Suttner (1989). "Learning Heuristics for a Theorem Prover using Back Propagation.". In J. Retti; K. Leidlmair (eds.). 5. Österreichische Artificial-Intelligence-Tagung. Informatik-Fachberichte 208, pp. 87-95. Springer. Archived from the original on 2021-04-15. Retrieved 2016-08-14.
^Rémi Coulom (2007). "Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search". Computers and Games, 5th International Conference, CG 2006, Turin, Italy, May 29–31, 2006. Revised Papers. H. Jaap van den Herik, Paolo Ciancarini, H. H. L. M. Donkers (eds.). Springer. pp. 72–83. CiteSeerX10.1.1.81.6817. ISBN978-3-540-75537-1.
^ abcKocsis, Levente; Szepesvári, Csaba (2006). "Bandit based Monte-Carlo Planning". In Fürnkranz, Johannes; Scheffer, Tobias; Spiliopoulou, Myra (eds.). Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Berlin, Germany, September 18–22, 2006, Proceedings. Lecture Notes in Computer Science. Vol. 4212. Springer. pp. 282–293. CiteSeerX10.1.1.102.1296. doi:10.1007/11871842_29. ISBN3-540-45375-X.
^Richard J. Lorentz (2008). "Amazons Discover Monte-Carlo". Computers and Games, 6th International Conference, CG 2008, Beijing, China, September 29 – October 1, 2008. Proceedings. H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, Mark H. M. Winands (eds.). Springer. pp. 13–24. ISBN978-3-540-87607-6.
^Mountain, Gwaredd (2015). "Tactical Planning and Real-time MCTS in Fable Legends". Archived from the original on 2019-06-08. Retrieved 2019-06-08. .. we implemented a simulation based approach, which involved modelling the game play and using MCTS to search the potential plan space. Overall this worked well, ...
^Michael Buro; Jeffrey Richard Long; Timothy Furtak; Nathan R. Sturtevant (2009). "Improving State Evaluation, Inference, and Search in Trick-Based Card Games". IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11–17, 2009. Craig Boutilier (ed.). pp. 1407–1413. CiteSeerX10.1.1.150.3077.
^István Szita; Guillaume Chaslot; Pieter Spronck (2010). "Monte-Carlo Tree Search in Settlers of Catan"(PDF). In Jaap Van Den Herik; Pieter Spronck (eds.). Advances in Computer Games, 12th International Conference, ACG 2009, Pamplona, Spain, May 11–13, 2009. Revised Papers. Springer. pp. 21–32. ISBN978-3-642-12992-6. Archived from the original(PDF) on 2016-03-04. Retrieved 2015-11-30.
^Browne, Cameron B.; Powley, Edward; Whitehouse, Daniel; Lucas, Simon M.; Cowling, Peter I.; Rohlfshagen, Philipp; Tavener, Stephen; Perez, Diego; Samothrakis, Spyridon; Colton, Simon (2012). "A Survey of Monte Carlo Tree Search Methods". IEEE Transactions on Computational Intelligence and AI in Games. 4 (1): 1–43. doi:10.1109/tciaig.2012.2186810. ISSN1943-068X.
^Ramanujan, Raghuram; Sabharwal, Ashish; Selman, Bart (May 2010). "On adversarial search spaces and sampling-based planning". ICAPS '10: Proceedings of the Twentieth International Conference on International Conference on Automated Planning and Scheduling. Icaps'10: 242–245.
^Drake, Peter (December 2009). "The Last-Good-Reply Policy for Monte-Carlo Go". ICGA Journal. 32 (4): 221–227. doi:10.3233/ICG-2009-32404.
^Seth Pellegrino; Peter Drake (2010). "Investigating the Effects of Playout Strength in Monte-Carlo Go". Proceedings of the 2010 International Conference on Artificial Intelligence, ICAI 2010, July 12–15, 2010, Las Vegas Nevada, USA. Hamid R. Arabnia, David de la Fuente, Elena B. Kozerenko, José Angel Olivas, Rui Chang, Peter M. LaMonica, Raymond A. Liuzzi, Ashu M. G. Solo (eds.). CSREA Press. pp. 1015–1018. ISBN978-1-60132-148-0.
^ abGelly, Sylvain; Silver, David (2007). "Combining Online and Offline Knowledge in UCT"(PDF). Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis, Oregon, USA, June 20–24, 2007. Zoubin Ghahramani (ed.). ACM. pp. 273–280. ISBN978-1-59593-793-3. Archived from the original(PDF) on 2017-08-28.
^Guillaume M.J-B. Chaslot, Mark H.M. Winands, Jaap van den Herik (2008). "Parallel Monte-Carlo Tree Search"(PDF). Computers and Games, 6th International Conference, CG 2008, Beijing, China, September 29 – October 1, 2008. Proceedings. H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, Mark H. M. Winands (eds.). Springer. pp. 60–71. ISBN978-3-540-87607-6.{{cite book}}: CS1 maint: multiple names: authors list (link)
Cameron Browne; Edward Powley; Daniel Whitehouse; Simon Lucas; Peter I. Cowling; Philipp Rohlfshagen; Stephen Tavener; Diego Perez; Spyridon Samothrakis; Simon Colton (March 2012). "A Survey of Monte Carlo Tree Search Methods". IEEE Transactions on Computational Intelligence and AI in Games. 4 (1): 1–43. CiteSeerX10.1.1.297.3086. doi:10.1109/tciaig.2012.2186810. S2CID9316331.
إمبراطورية المغول ᠶᠡᠬᠡ ᠮᠣᠩᠭᠣᠯ ᠤᠶᠯᠤᠰ إمبراطورية المغول إمبراطورية 1206 – 1368 إمبراطورية المغولرسم معاصر للرايات البيضاء التسعة التمدد الجغرافي للمغول عاصمة قراقورم، خان بالق (وهو الاسم القديم لبكين) وزانادو[معلومة 1] نظام الحكم غير محدّد نظام الح
Indeks FTSE 100 (19 Juli 1987 hingga 19 Januari 1988). DJIA (19 Juli 1987 hingga 19 Januari 1988). Dalam keuangan, Senin Hitam mengacu pada peristiwa yang terjadi pada hari Senin, 19 Oktober 1987 (hari yang sama dengan peristiwa Tragedi Bintaro), ketika pasar saham di seluruh dunia hancur, merontokkan nilai yang sangat besar dalam waktu yang sangat singkat. Kehancuran bermula di Hong Kong dan menyebar ke barat ke Eropa, menghantam Amerika Serikat setelah pasar lain telah mengalami penurunan d...
Logo resmi program perguruan tinggi hibah laut nasional Program perguruan tinggi hibah laut nasional adalah program dari National Oceanic and Atmospheric Administration (NOAA) dalam Kementerian Perdagangan Amerika Serikat. Program ini merupakan jaringan nasional dari 34 program Hibah-Laut berbasis universitas yang terlibat dalam penelitian ilmiah, pendidikan, pelatihan, dan proyek penyuluhan yang diarahkan untuk konservasi dan penggunaan praktis pantai, Danau-Danau Besar serta area kelautan l...
1951 Indian filmKerala KesariDirected byV. KrishnanWritten byV. K. KumarScreenplay byN. ShankarapillaiProduced byVaikkam Vasudevan NairStarringKalaikkal Kumaran K. K. Aroor Durga VarmaCinematographyP. K. Madhavan NairEdited byK. D. GeorgeMusic byJnanamaniDistributed byGeo ReleaseRelease date 17 May 1951 (1951-05-17) CountryIndiaLanguageMalayalam Kerala Kesari is a 1951 Indian Malayalam-language film, directed by V. Krishnan and produced by Vaikkam Vasudevan Nair.[1] The...
U12 minor spliceosomal RNAPredicted secondary structure and sequence conservation of U12IdentifiersSymbolU12RfamRF00007Other dataRNA typeGene; snRNA; splicingDomain(s)EukaryotaGOGO:0000371 GO:0045131 GO:0005693SOSO:0000399PDB structuresPDBe U12 minor spliceosomal RNA is formed from U12 small nuclear (snRNA), together with U4atac/U6atac, U5, and U11 snRNAs and associated proteins, forms a spliceosome that cleaves a divergent class of low-abundance pre-mRNA introns. Although the U12 sequence is...
Mythology of the Maya people of Mesoamerica Maya mythologyand religionMaize god and Itzamna Practices Bloodletting Death rituals Dedication rituals Pilgrimage Priesthood Sacrifice (Humans) Places Cave sites Middleworld Xibalba Deities and beings Death gods Jaguar gods Mams Acat Ah Peku Ah-Muzen-Cab Awilix Bacab Cabaguil Camazotz Chaac Chin Cizin Chirakan-Ixmucane Ek Chuaj Goddess I God L Hero Twins Howler monkey gods Huay Chivo Hun Hunahpu Huracan Itzamna Ixchel Ixpiyacoc Ixtab K'awiil Kinich...
Hubungan Papua Nugini–Filipina Filipina Papua Nugini Hubungan Papua Nugini–Filipina merujuk kepada hubungan bilateral Papua Nugini dan Filipina. Papua Nugini memiliki kedubes di Manila dan Filipina memiliki kedubes di Port Moresby, yang juga diakreditasikan untuk Kepulauan Solomon, Vanuatu dan Fiji.[1] Referensi ^ Bolivar L. Bao. Philippine Embassy - About the Embassy. Pompe.comxa.com. Diarsipkan dari versi asli tanggal 2016-03-05. Diakses tanggal 10 June 2013. lbs Hubungan ...
Former high-end brothel in Amsterdam This article is about the Dutch brothel. For the symbol in Buddhist art, see Yab-Yum. Entrance to Yab Yum brothel, Singel 295, Amsterdam. December 2005 Yab Yum was one of the best-known and most exclusive brothels in Amsterdam, the Netherlands.[1] Located in a 17th-century canal house on the Singel, it mostly catered to businessmen and foreign visitors. A second Yab Yum operated for a while in Rotterdam,[2] but has since been closed. In Jan...
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (January 2013) (Learn how and when to remove this template message) Ámbar La Fox by Annemarie Heinrich (1964) Ambar La Fox (born Amanda Lasausse; February 10, 1935 in Buenos Aires – December 8, 1993), was an Argentine actress, dancer, singer and Diva. In 1977, she starred ...
Pesta Olahraga Asia Tenggara ke-29Tuan rumahKuala Lumpur MalaysiaMotoRising Together(Bangkit bersama )Jumlah negara11Jumlah disiplin405 dalam 38 cabang olahragaUpacara pembukaan19 Agustus 2017Upacara penutupan30 Agustus 2017Tempat utamaStadion Nasional Bukit JahilSitus webOfficial website← Singapura 2015 Manila 2019 → Pesta Olahraga Asia Tenggara 2017 (Melayu: Sukan SEA 2017), secara resmi dikenal sebagai Pesta Olahraga Asia Tenggara ke-29 (Melayu: Sukan SEA ke-29) da...
Irish activist Colm O'GormanExecutive Director of Amnesty International IrelandIn officeJanuary 2008 (2008-01)[1] – June 2022SenatorIn officeMay – July 2007ConstituencyNominated by the Taoiseach Personal detailsBorn (1966-07-15) 15 July 1966 (age 57)County Wexford, IrelandPolitical partyProgressive Democrats (formerly) Colm O'Gorman (born 15 July 1966) is an Irish activist and former politician. He was the executive director of Amnesty Internationa...
For the national origin group of Eritrea, see Eritreans. Demographics of EritreaPopulationEstimates range between 3.6 million and 6.7 million[1][2] Eritrea has never conducted an official government census.[3]Growth rate1.03% (2022 est.)Birth rate27.04 births/1,000 population (2022 est.)Death rate6.69 deaths/1,000 population (2022 est.)Life expectancy66.85 years • male64.25 years • female69.53 years (2022 est.)Fertility rate3.58 children born/wo...
Hospital in Colorado, United StatesMemorial Hospital CentralUCHealthThe hospital's main façade on East Boulder StreetThe hospital's location in Colorado.GeographyLocation1400 East Boulder Street Colorado Springs, Colorado 80909, El Paso County, Colorado, United StatesCoordinates38°50′23″N 104°47′59″W / 38.83972°N 104.79972°W / 38.83972; -104.79972[1]OrganizationFundingNon-profit hospitalTypeAcute hospital[2]ServicesEmergency departmentLevel...
Маянські цифривид позиційні двадцяткові Цифри мая Цифри мая — позиційний запис, заснований на двадцятковій системі числення (за основою 20), що використовувалася цивілізацією Мая у доколумбовій Мезоамериці. Цифри мая складалися з трьох елементів: нуля (знак черепашки...
Primary immune deficiency disorder Medical conditionHyper IgM syndrome type 3Immunoglobulin MSpecialtyHematology TypesHyper-IgM syndrome type 1,2,3,4 and 5[1][2][3][4][5]Diagnostic methodMRI, Chest radiography and genetic testing[6]TreatmentAllogeneic hematopoietic cell transplantation[7] Hyper-IgM syndrome type 3 is a form of hyper IgM syndrome characterized by mutations of the CD40 gene.[8] In this type, Immature B cells c...
علي شمخاني (بالفارسية: علی شمخانی) وزارة الدفاع ودعم القوات المسلحة في المنصب19 أغسطس 1997 – 24 أغسطس 2005 الرئيس محمد خاتمي معلومات شخصية الميلاد 29 سبتمبر 1955 (العمر 68 سنة)الأهواز، إيران الجنسية إيراني الديانة إسلام الحياة العملية المدرسة الأم جامعة تشمران الأهوازية المهن...
IstatKantor pusat Istat di RomaInformasi InstitutDibentuk1926 (1926)Wilayah hukumPemerintah ItaliaKantor pusatRoma, ItaliaInstitut eksekutifGian Carlo Blangiardo, PresidenSitus webistat.it/en/ Istituto Nazionale di Statistica (Istat) adalah institut statistik nasional Italia. Didirikan tahun 1926 untuk mengoleksi dan mengumpulkan data mengenai bangsa Italia. Mengurus sensus adalah salah satu aktivitasnya. Sejak 4 Agustus 2009, Enrico Giovannini, bekas kepala statistik Organisation for Ec...
Abrahamic monotheistic religion Shrine of the Báb in Haifa, Israel Bábi FaithTypeUniversal religionClassificationAbrahamic, Iranian, IndianTheologyMonotheisticSeparated fromIslamSeparationsBahá'í FaithMembers1000-2000 Part of a series onBábism Founder The Báb Prominent people Letters of the Living Mullá Husayn Táhirih Quddús Bahá'u'lláh Subh-i-Azal Key scripture Arabic Bayán Persian Bayán Kitabu'l-Asmá' Writings of the Báb History Shaykh Ahmad Shaykhism Conference of Badasht Ba...