Momentum operator

In quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is: where ħ is the reduced Planck constant, i the imaginary unit, x is the spatial coordinate, and a partial derivative (denoted by ) is used instead of a total derivative (d/dx) since the wave function is also a function of time. The "hat" indicates an operator. The "application" of the operator on a differentiable wave function is as follows:

In a basis of Hilbert space consisting of momentum eigenstates expressed in the momentum representation, the action of the operator is simply multiplication by p, i.e. it is a multiplication operator, just as the position operator is a multiplication operator in the position representation. Note that the definition above is the canonical momentum, which is not gauge invariant and not a measurable physical quantity for charged particles in an electromagnetic field. In that case, the canonical momentum is not equal to the kinetic momentum.

At the time quantum mechanics was developed in the 1920s, the momentum operator was found by many theoretical physicists, including Niels Bohr, Arnold Sommerfeld, Erwin Schrödinger, and Eugene Wigner. Its existence and form is sometimes taken as one of the foundational postulates of quantum mechanics.

Origin from de Broglie plane waves

The momentum and energy operators can be constructed in the following way.[1]

One dimension

Starting in one dimension, using the plane wave solution to Schrödinger's equation of a single free particle, where p is interpreted as momentum in the x-direction and E is the particle energy. The first order partial derivative with respect to space is

This suggests the operator equivalence so the momentum of the particle and the value that is measured when a particle is in a plane wave state is the (generalized) eigenvalue of the above operator.[2]

Since the partial derivative is a linear operator, the momentum operator is also linear, and because any wave function can be expressed as a superposition of other states, when this momentum operator acts on the entire superimposed wave, it yields the momentum eigenvalues for each plane wave component. These new components then superimpose to form the new state, in general not a multiple of the old wave function.

Three dimensions

The derivation in three dimensions is the same, except the gradient operator del is used instead of one partial derivative. In three dimensions, the plane wave solution to Schrödinger's equation is: and the gradient is where ex, ey, and ez are the unit vectors for the three spatial dimensions, hence

This momentum operator is in position space because the partial derivatives were taken with respect to the spatial variables.

Definition (position space)

For a single particle with no electric charge and no spin, the momentum operator can be written in the position basis as:[3] where is the gradient operator, ħ is the reduced Planck constant, and i is the imaginary unit.

In one spatial dimension, this becomes[4]

This is the expression for the canonical momentum. For a charged particle q in an electromagnetic field, during a gauge transformation, the position space wave function undergoes a local U(1) group transformation,[5] and will change its value. Therefore, the canonical momentum is not gauge invariant, and hence not a measurable physical quantity.

The kinetic momentum, a gauge invariant physical quantity, can be expressed in terms of the canonical momentum, the scalar potential φ and vector potential A:[6]

The expression above is called minimal coupling. For electrically neutral particles, the canonical momentum is equal to the kinetic momentum.

Properties

Hermiticity

The momentum operator can be described as a symmetric (i.e. Hermitian), unbounded operator acting on a dense subspace of the quantum state space. If the operator acts on a (normalizable) quantum state then the operator is self-adjoint. In physics the term Hermitian often refers to both symmetric and self-adjoint operators.[7][8]

(In certain artificial situations, such as the quantum states on the semi-infinite interval [0, ∞), there is no way to make the momentum operator Hermitian.[9] This is closely related to the fact that a semi-infinite interval cannot have translational symmetry—more specifically, it does not have unitary translation operators. See below.)

Canonical commutation relation

By applying the commutator to an arbitrary state in either the position or momentum basis, one can easily show that: where is the unit operator.[10] The Heisenberg uncertainty principle defines limits on how accurately the momentum and position of a single observable system can be known at once. In quantum mechanics, position and momentum are conjugate variables.

Fourier transform

The following discussion uses the bra–ket notation. One may write so the tilde represents the Fourier transform, in converting from coordinate space to momentum space. It then holds that that is, the momentum acting in coordinate space corresponds to spatial frequency,

An analogous result applies for the position operator in the momentum basis, leading to further useful relations, where δ stands for Dirac's delta function.

Derivation from infinitesimal translations

The translation operator is denoted T(ε), where ε represents the length of the translation. It satisfies the following identity: that becomes

Assuming the function to be analytic (i.e. differentiable in some domain of the complex plane), one may expand in a Taylor series about x: so for infinitesimal values of ε:

As it is known from classical mechanics, the momentum is the generator of translation, so the relation between translation and momentum operators is:[11][further explanation needed] thus

4-momentum operator

Inserting the 3d momentum operator above and the energy operator into the 4-momentum (as a 1-form with (+ − − −) metric signature): obtains the 4-momentum operator: where μ is the 4-gradient, and the becomes + preceding the 3-momentum operator. This operator occurs in relativistic quantum field theory, such as the Dirac equation and other relativistic wave equations, since energy and momentum combine into the 4-momentum vector above, momentum and energy operators correspond to space and time derivatives, and they need to be first order partial derivatives for Lorentz covariance.

The Dirac operator and Dirac slash of the 4-momentum is given by contracting with the gamma matrices:

If the signature was (− + + +), the operator would be instead.

See also

References

  1. ^ Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd Edition), R. Resnick, R. Eisberg, John Wiley & Sons, 1985, ISBN 978-0-471-87373-0
  2. ^ de la Madrid Modino, R. (2001). Quantum mechanics in rigged Hilbert space language (PhD thesis). Universidad de Valladolid. p. 106.
  3. ^ Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145546-9
  4. ^ In the position coordinate representation, that is,
  5. ^ Zinn-Justin, Jean; Guida, Riccardo (2008-12-04). "Gauge invariance". Scholarpedia. 3 (12): 8287. Bibcode:2008SchpJ...3.8287Z. doi:10.4249/scholarpedia.8287. ISSN 1941-6016.
  6. ^ Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd Edition), R. Resnick, R. Eisberg, John Wiley & Sons, 1985, ISBN 978-0-471-87373-0
  7. ^ See Lecture notes 1 by Robert Littlejohn Archived 2012-06-17 at the Wayback Machine for a specific mathematical discussion and proof for the case of a single, uncharged, spin-zero particle. See Lecture notes 4 by Robert Littlejohn for the general case.
  8. ^ Hall, B. C. (2013). Quantum Theory for Mathematicians. Graduate Texts in Mathematics. Vol. 267. Springer. p. 64. Bibcode:2013qtm..book.....H. ISBN 978-1461471158.
  9. ^ Bonneau, G., Faraut, J., Valent, G. (2001). "Self-adjoint extensions of operators and the teaching of quantum mechanics". American Journal of Physics. 69 (3): 322–331. arXiv:quant-ph/0103153. Bibcode:2001AmJPh..69..322B. doi:10.1119/1.1328351. S2CID 16949018.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Born, M.; Jordan, P. (1925). "Zur Quantenmechanik". Zeitschrift für Physik (in German). 34 (1): 858–888. Bibcode:1925ZPhy...34..858B. doi:10.1007/BF01328531. ISSN 1434-6001.
  11. ^ Sakurai, Jun John; Napolitano, Jim (2021). Modern quantum mechanics (3rd ed.). Cambridge: Cambridge University Press. ISBN 978-1-108-47322-4.

Read other articles:

Japanese light novel series Samurai Girl: Real Bout High SchoolCover of the first novel of Samurai Girl: Real Bout High School as published by Fujimi Shoboリアル バウト ハイ スクール(Shoukan Kyoushi Riaru Bauto Hai Sukūru)GenreMartial arts Light novelWritten byReiji SaigaIllustrated bySora InouePublished byFujimi ShoboImprintFujimi Fantasia BunkoMagazineDragon MagazineDemographicShōnenOriginal runJanuary 1997 – July 2010Volumes19 MangaWritten byReiji SaigaI...

 

بلدة إلم ريفر الإحداثيات 46°53′27″N 88°51′19″W / 46.8908°N 88.8553°W / 46.8908; -88.8553  [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة هوتون  خصائص جغرافية  المساحة 93.3 ميل مربع  ارتفاع 362 متر  عدد السكان  عدد السكان 204 (1 أبريل 2020)[3]177...

 

جيمي ديكسون (بالإنجليزية: Jimmy Dixon)‏    معلومات شخصية الميلاد 11 فبراير 1945 (78 سنة)  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة ويك فورست  المهنة سياسي  الحزب الحزب الجمهوري  اللغات الإنجليزية  المواقع الموقع الموقع الرسمي  تعديل مصدري - تعد

Fortuna DüsseldorfNama lengkapDüsseldorfer Turn- und SportvereinFortuna 1895 e.V.JulukanF95, TunaBerdiri5 Mei 1895StadionMerkur Spiel-Arena(Kapasitas: 54.600[1])KetuaThomas Röttgermann (Presiden)Erich RutemöllerLutz PfannenstielManajerFriedhelm FunkelLigaBundesliga2018–19Bundesliga, ke-10Situs webSitus web resmi klub Kostum kandang Kostum tandang Kostum ketiga Musim ini Düsseldorfer Turn- und Sportverein Fortuna 1895 e.V. [fɔɐ̯ˈtʰuːna ˈdʏsl̩ˌdɔɐ̯f] ( sima...

 

Abraham Ortega Aguayo Abraham Ortega Aguayo en 1938. Ministro de Relaciones Exteriores y Comercio de Chile 24 de diciembre de 1938-8 de febrero de 1940Presidente Pedro Aguirre CerdaPredecesor Luis Arteaga GarcíaSucesor Cristóbal Sáenz Cerda Información personalNacimiento 14 de junio de 1891 Lumaco, ChileFallecimiento 20 de septiembre de 1951 (60 años)Santiago, ChileNacionalidad ChilenaLengua materna EspañolFamiliaPadres Santiago Ortega QuezadaEdelmira Aguayo SáezCónyuge Betty Fenner Mar

 

جزء من سلسلة مقالات سياسة الجزائر الدستور الدستور حقوق الإنسان السلطة التنفيذية الرئيس (قائمة) عبد المجيد تبون رئيس الحكومة (قائمة) عبد العزيز جراد السلطة التشريعية البرلمان مجلس الأمّة المجلس الشعبي الوطني السلطة القضائية السلطة القضائية المحكمة العليا التقسيمات الإدا...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. صَّقرُ يهاجم حَمامة بريشة أدولف مينزل 1844. المعرض الوطني القديم في برلين. الواقعية (بالإنجليزية: Realism)‏ هي حركة فنية نشأت في النصف الثاني من القرن التاسع عشر في فرنسا.وتعنى الو...

 

American television sitcom (1989–1997) CoachGenreSitcomCreated byBarry KempStarringCraig T. NelsonShelley FabaresJerry Van DykeBill FagerbakkeClare CareyKenneth KimminsKatherine HelmondTheme music composerJohn MorrisComposerJ.A.C. RedfordCountry of originUnited StatesOriginal languageEnglishNo. of seasons9No. of episodes200 (list of episodes)ProductionExecutive producerBarry KempRunning time24 minutesProduction companiesBungalow 78 ProductionsUniversal TelevisionOriginal releaseNetworkABCRe...

 

Railway station This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Kuala Lumpur Sentral station – news · newspapers · books · scholar · JSTOR (December 2022) (Learn how and when to remove this template message) KL SentralTransit-oriented development hub and Intermodal passenger transport stationFrom top, left t...

1998 massacre during the Kivu Conflict Kasika massacrePart of Kivu conflictThe royal tombs where Mwami Mubeza III was killed along with the royal court membersLocationLuindi Chiefdom, Mwenga Territory, South Kivu, Democratic Republic of the CongoDateAugust 24, 1998Attack typeMassacre, ethnic cleansing, arson, sexual violenceDeaths1,000 civilians killed per DRC Mapping Exercise ReportVictimNyindu peoplePerpetratorsRally for Congolese Democracy (RCD) and Rwanda Defence Force (RDF)MotiveAllegati...

 

See also: List of Roman auxiliary regiments Non-citizen troops in the Imperial Roman army Roman auxiliary infantry crossing a river, probably the Danube, on a pontoon bridge during the emperor Trajan's Dacian Wars (AD 101–106). They can be distinguished by the oval shield (clipeus) they were equipped with, in contrast to the rectangular scutum carried by legionaries. Panel from Trajan's Column, Rome Part of a series on theMilitary of ancient Rome 753 BC – AD 476 Structural history Army Un...

 

1992 live album by Frank ZappaYou Can't Do That on Stage Anymore, Vol. 5Live album by Frank ZappaReleasedJuly 10, 1992RecordedJune 1966–July 1969 (Disc one);May 30–July 14, 1982 (Disc two)Genre Hard rock jazz fusion rock and roll experimental rock Length140:45LabelRykodiscProducerFrank ZappaFrank Zappa chronology You Can't Do That on Stage Anymore, Vol. 4(1991) You Can't Do That on Stage Anymore, Vol. 5(1992) You Can't Do That on Stage Anymore, Vol. 6(1992) Professional ratingsRev...

Borough in Hunterdon County, New Jersey, United States For the township, see Lebanon Township, New Jersey. For other uses, see Lebanon (disambiguation). Borough in New Jersey, United StatesLebanon, New JerseyBoroughLebanon Reformed Church SealLocation of Lebanon in Hunterdon County highlighted in red (left). Inset map: Location of Hunterdon County in New Jersey highlighted in orange (right).Census Bureau map of Lebanon, New JerseyLebanonLocation in Hunterdon CountyShow map of Hunterdon County...

 

Les Dictionnaires de données du Réseau canadien d’information sur le patrimoine (RCIP) sont des normes de métadonnées pour les collections muséales canadiennes. Définition Les Dictionnaires de données des sciences humaines et des sciences naturelles sont des normes de métadonnées propres aux collections muséales canadiennes. Ils ont été développés par l'organisme du ministère du Patrimoine canadien, soit le Réseau canadien d’informations sur le patrimoine (RCIP), afin d’...

 

This article is about the Atlantis computer game. For other uses, see Cops and Robbers (disambiguation). 1985 video gameCops 'n' RobbersPublisher(s)AtlantisDesigner(s)Mike DavisProgrammer(s)Mike Davis (VIC, C64)Simon Leck (Atari)[1]Platform(s)VIC-20, Acorn Electron, Atari 8-bit, BBC Micro, Commodore 64, 16, Plus/4Release1985: VIC, C641986: C16, Plus/41987: Electron, BBC1988: AtariGenre(s)MazeMode(s)Single-player Cops 'n' Robbers is a video game published by Atlantis Software in 1985 f...

Mun tahuMun tahu, tahu sutera dengan udang, ayam, dan daun bawang yang ditutupi saus putihSajianHidangan utamaTempat asalIndonesiaDibuat olehTionghoa-IndonesiaSuhu penyajianPanasBahan utamaTahu telur sutera, sayuran, ayam atau jenis makanan laut  Media: Mun tahu Mun tahu (燜豆腐 / 焖豆腐) adalah hidangan etnis Tionghoa-Indonesia berbahan tahu sutera yang direbus menggunakan saus putih kental gurih, kemudian dicampur dengan daging ayam cincang dan udang.[1] Asal Usul Mun...

 

Logo von TRAFO TRAFO – Modelle für Kultur im Wandel ist ein Initiativprogramm der Kulturstiftung des Bundes. Das Programm unterstützt ländlich geprägte Regionen dabei, ihre Kulturorte und ihr Kulturangebot dauerhaft zu stärken. Beteiligt sind bislang sechs Projekte aus dem Oderbruch, Südniedersachsen, der Saarpfalz und der Schwäbischen Alb.[1] Ab 2018 kommen weitere Regionen hinzu. Von 2016 bis 2023 entwickeln die beteiligten regionalen Museen, Theater, Bibliotheken, Kulturze...

 

1970 filmHomerTheatrical release posterDirected byJohn Trent[1]Written byClaude HarzMatt Clark[1]Screenplay byClaude Harz[1]Produced byTerence Dene Steven North [1]StarringDon ScardinoTisa FarrowAlex Nicol[1]CinematographyLaszlo George [1]Edited byMichael Menne[1]Music byDon ScardinoProductioncompaniesCinema Center FilmsPalomar Pictures[1]Distributed byNational General Pictures[1]Release dates September 21, 1970...

Salib Santo Petrus adalah Salib Latin yang terbalik. Bagian dari serial tentangSanto Petrus Dalam Perjanjian Baru Berjalan di atas air Pengakuan Telinga hamba Penyangkalan Pemulihan Penglihatan Pembebasan Insiden di Antiokhia Surat-surat 1 Petrus 2 Petrus Lain-lain Salib Pedang Makam Quo vadis? Keutamaan Dalam Yudaisme Dalam Islam lbs Salib Santo Petrus (Bahasa Inggris: Cross of St. Peter atau resminya Petrine Cross) adalah salib Latin yang terbalik. Asal usul simbol ini datang dari tradisi K...

 

Platycerium coronarium merupakan tanaman paku yang digolongkan pada jenis paku sejati. Tanduk rusa (Platycerium coronarium) adalah spesies tumbuhan dalam jenis tumbuhan paku. Ini paling banyak ditemukan dan dipelihara sebagai tanaman hias karena juntaian daunnya yang indah. Tanduk rusa adalah jenis tanaman epifit, tanaman yang menempel pada benda atau pohon lain tanpa merugikan tumbuhan yang menjadi inangnya. Tanduk rusa menyukai tempat yang tidak memperoleh sinar matahari secara langsung. Hi...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!