Hanbury Brown and Twiss effect

In physics, the Hanbury Brown and Twiss (HBT) effect is any of a variety of correlation and anti-correlation effects in the intensities received by two detectors from a beam of particles. HBT effects can generally be attributed to the wave–particle duality of the beam, and the results of a given experiment depend on whether the beam is composed of fermions or bosons. Devices which use the effect are commonly called intensity interferometers and were originally used in astronomy, although they are also heavily used in the field of quantum optics.

History

In 1954, Robert Hanbury Brown and Richard Q. Twiss introduced the intensity interferometer concept to radio astronomy for measuring the tiny angular size of stars, suggesting that it might work with visible light as well.[1] Soon after they successfully tested that suggestion: in 1956 they published an in-lab experimental mockup using blue light from a mercury-vapor lamp,[2] and later in the same year, they applied this technique to measuring the size of Sirius.[3] In the latter experiment, two photomultiplier tubes, separated by a few meters, were aimed at the star using crude telescopes, and a correlation was observed between the two fluctuating intensities. Just as in the radio studies, the correlation dropped away as they increased the separation (though over meters, instead of kilometers), and they used this information to determine the apparent angular size of Sirius.

An example of an intensity interferometer that would observe no correlation if the light source is a coherent laser beam, and positive correlation if the light source is a filtered one-mode thermal radiation. The theoretical explanation of the difference between the correlations of photon pairs in thermal and in laser beams was first given by Roy J. Glauber, who was awarded the 2005 Nobel Prize in Physics "for his contribution to the quantum theory of optical coherence".

This result was met with much skepticism in the physics community. The radio astronomy result was justified by Maxwell's equations, but there were concerns that the effect should break down at optical wavelengths, since the light would be quantised into a relatively small number of photons that induce discrete photoelectrons in the detectors. Many physicists worried that the correlation was inconsistent with the laws of thermodynamics. Some even claimed that the effect violated the uncertainty principle. Hanbury Brown and Twiss resolved the dispute in a neat series of articles (see References below) that demonstrated, first, that wave transmission in quantum optics had exactly the same mathematical form as Maxwell's equations, albeit with an additional noise term due to quantisation at the detector, and second, that according to Maxwell's equations, intensity interferometry should work. Others, such as Edward Mills Purcell immediately supported the technique, pointing out that the clumping of bosons was simply a manifestation of an effect already known in statistical mechanics. After a number of experiments, the whole physics community agreed that the observed effect was real.

The original experiment used the fact that two bosons tend to arrive at two separate detectors at the same time. Morgan and Mandel used a thermal photon source to create a dim beam of photons and observed the tendency of the photons to arrive at the same time on a single detector. Both of these effects used the wave nature of light to create a correlation in arrival time – if a single photon beam is split into two beams, then the particle nature of light requires that each photon is only observed at a single detector, and so an anti-correlation was observed in 1977 by H. Jeff Kimble.[4] Finally, bosons have a tendency to clump together, giving rise to Bose–Einstein correlations, while fermions due to the Pauli exclusion principle, tend to spread apart, leading to Fermi–Dirac (anti)correlations. Bose–Einstein correlations have been observed between pions, kaons and photons, and Fermi–Dirac (anti)correlations between protons, neutrons and electrons. For a general introduction in this field, see the textbook on Bose–Einstein correlations by Richard M. Weiner.[5] A difference in repulsion of Bose–Einstein condensate in the "trap-and-free fall" analogy of the HBT effect[6] affects comparison.

Also, in the field of particle physics, Gerson Goldhaber et al. performed an experiment in 1959 in Berkeley and found an unexpected angular correlation among identical pions, discovering the ρ0 resonance, by means of decay.[7] From then on, the HBT technique started to be used by the heavy-ion community to determine the space–time dimensions of the particle emission source for heavy-ion collisions. For developments in this field up to 2005, see for example this review article.[8]

Wave mechanics

The HBT effect can, in fact, be predicted solely by treating the incident electromagnetic radiation as a classical wave. Suppose we have a monochromatic wave with frequency on two detectors, with an amplitude that varies on timescales slower than the wave period . (Such a wave might be produced from a very distant point source with a fluctuating intensity.)

Since the detectors are separated, say the second detector gets the signal delayed by a time , or equivalently, a phase ; that is,

The intensity recorded by each detector is the square of the wave amplitude, averaged over a timescale that is long compared to the wave period but short compared to the fluctuations in :

where the overline indicates this time averaging. For wave frequencies above a few terahertz (wave periods less than a picosecond), such a time averaging is unavoidable, since detectors such as photodiodes and photomultiplier tubes cannot produce photocurrents that vary on such short timescales.

The correlation function of these time-averaged intensities can then be computed:

Most modern schemes actually measure the correlation in intensity fluctuations at the two detectors, but it is not too difficult to see that if the intensities are correlated, then the fluctuations , where is the average intensity, ought to be correlated, since

In the particular case that consists mainly of a steady field with a small sinusoidally varying component , the time-averaged intensities are

with , and indicates terms proportional to , which are small and may be ignored.

The correlation function of these two intensities is then

showing a sinusoidal dependence on the delay between the two detectors.

Quantum interpretation

Photon detections as a function of time for a) antibunching (e.g. light emitted from a single atom), b) random (e.g. a coherent state, laser beam), and c) bunching (chaotic light). τc is the coherence time (the time scale of photon or intensity fluctuations).

The above discussion makes it clear that the Hanbury Brown and Twiss (or photon bunching) effect can be entirely described by classical optics. The quantum description of the effect is less intuitive: if one supposes that a thermal or chaotic light source such as a star randomly emits photons, then it is not obvious how the photons "know" that they should arrive at a detector in a correlated (bunched) way. A simple argument suggested by Ugo Fano in 1961[9] captures the essence of the quantum explanation. Consider two points and in a source that emit photons detected by two detectors and as in the diagram. A joint detection takes place when the photon emitted by is detected by and the photon emitted by is detected by (red arrows) or when 's photon is detected by and 's by (green arrows). The quantum mechanical probability amplitudes for these two possibilities are denoted by and respectively. If the photons are indistinguishable, the two amplitudes interfere constructively to give a joint detection probability greater than that for two independent events. The sum over all possible pairs in the source washes out the interference unless the distance is sufficiently small.

Two source points a and b emit photons detected by detectors A and B. The two colors represent two different ways to detect two photons.

Fano's explanation nicely illustrates the necessity of considering two-particle amplitudes, which are not as intuitive as the more familiar single-particle amplitudes used to interpret most interference effects. This may help to explain why some physicists in the 1950s had difficulty accepting the Hanbury Brown and Twiss result. But the quantum approach is more than just a fancy way to reproduce the classical result: if the photons are replaced by identical fermions such as electrons, the antisymmetry of wave functions under exchange of particles renders the interference destructive, leading to zero joint detection probability for small detector separations. This effect is referred to as antibunching of fermions.[10] The above treatment also explains photon antibunching:[11] if the source consists of a single atom, which can only emit one photon at a time, simultaneous detection in two closely spaced detectors is clearly impossible. Antibunching, whether of bosons or of fermions, has no classical wave analog.

From the point of view of the field of quantum optics, the HBT effect was important to lead physicists (among them Roy J. Glauber and Leonard Mandel) to apply quantum electrodynamics to new situations, many of which had never been experimentally studied, and in which classical and quantum predictions differ.

See also

Footnotes

References

  1. ^ Hanbury Brown, R.; Twiss, R.Q. (1954). "A new type of interferometer for use in radio astronomy". Philosophical Magazine. 45 (366): 663–682. doi:10.1080/14786440708520475. ISSN 1941-5982.
  2. ^ Hanbury Brown, R.; Twiss, R. Q. (1956). "Correlation between Photons in two Coherent Beams of Light". Nature. 177 (4497): 27–29. doi:10.1038/177027a0. ISSN 0028-0836. S2CID 4224650.
  3. ^ Hanbury Brown, R.; Twiss, Dr R.Q. (1956). "A Test Of A New Type Of Stellar Interferometer On Sirius". Nature. 178 (4541): 1046–1048. Bibcode:1956Natur.178.1046H. doi:10.1038/1781046a0. S2CID 38235692.
  4. ^ Kimble, H. J.; Dagenais, M.; Mandel, L. (1977). "Photon Antibunching in Resonance Fluorescence" (PDF). Physical Review Letters. 39 (11): 691–695. Bibcode:1977PhRvL..39..691K. doi:10.1103/PhysRevLett.39.691.
  5. ^ Richard M. Weiner, Introduction to Bose–Einstein Correlations and Subatomic Interferometry, John Wiley, 2000.
  6. ^ Comparison of the Hanbury Brown-Twiss effect for bosons and fermions.
  7. ^ G. Goldhaber; W. B. Fowler; S. Goldhaber; T. F. Hoang; T. E. Kalogeropoulos; W. M. Powell (1959). "Pion-pion correlations in antiproton annihilation events". Phys. Rev. Lett. 3 (4): 181. Bibcode:1959PhRvL...3..181G. doi:10.1103/PhysRevLett.3.181. S2CID 16160176.
  8. ^ M. Lisa, et al., Annu. Rev. Nucl. Part. Sci. 55, p. 357 (2005), ArXiv 0505014.
  9. ^ Fano, U. (1961). "Quantum theory of interference effects in the mixing of light from phase independent sources". American Journal of Physics. 29 (8): 539–545. Bibcode:1961AmJPh..29..539F. doi:10.1119/1.1937827.
  10. ^ M. Henny; et al. (1999). "The Fermionic Hanbury Brown and Twiss Experiment" (PDF). Science. 284 (5412): 296–298. Bibcode:1999Sci...284..296H. doi:10.1126/science.284.5412.296. PMID 10195890.
  11. ^ Kimble, H. J.; Dagenais, M.; Mandel, L. (1977). "Photon antibunching in resonance fluorescence" (PDF). Physical Review Letters. 39 (11): 691–695. Bibcode:1977PhRvL..39..691K. doi:10.1103/PhysRevLett.39.691.

Read other articles:

2001 Malayalam-language comedy-drama film by Shafi One Man ShowDirected byShafiWritten byRafi MecartinProduced byGirish VaikomStarringJayaramLalSamyuktha VarmaManyaKalabhavan ManiNarendra PrasadNarrated byLalCinematographyAnandakuttanEdited byK. P. HariharaputhranMusic bySuresh Peters(songs)Rajamani(score)Distributed byLal ReleaseRafa InternationalRelease date December 25, 2001 (2001-12-25) Running time147 minutesCountryIndiaLanguageMalayalam One Man Show is a 2001 Indian Malay...

 

Colchicum lusitanum Classificação científica Reino: Plantae Clado: angiospérmicas Clado: monocotiledóneas Ordem: Liliales Família: Liliaceae Género: Colchicum Espécie: C. lusitanum Nome binomial Colchicum lusitanumBrot. Colchicum lusitanum é uma espécie de planta com flor geófita[1][2], pertencente à família Liliaceae. Nomes comuns Os seus nomes comuns são açafrão-bastardo, cebola-venenosa, cólquico[3], dama-nua, dedo-de-mercúrio, lírio-verde, mata-cão, morte-de-cães ou n...

 

American football player (1918–2011) George FranckFranck, circa 1942Born:(1918-09-23)September 23, 1918Davenport, Iowa, U.S.Died:January 19, 2011(2011-01-19) (aged 92)Rock Island, Illinois, U.S.Career informationPosition(s)HalfbackCollegeMinnesotaNFL draft1941 / Round: 1 / Pick: 6Career historyAs player1941–1947New York Giants Career statsPlaying stats at NFL.com College Football Hall of Fame George Henning Sonny Franck (September 23, 1918 – January 19, 2011) was an ...

John ColetGambar potret karya Hans Holbein si Muda.LahirJanuari 1467London, InggrisMeninggal16 September 1519(1519-09-16) (umur 52)London, InggrisAlmamaterMagdalen College, OxfordEraFilsafat RenaisansKawasanFilsafat BaratAliranHumanisme RenaisansMinat utamaPolitik, sejarah, teologi Dipengaruhi Girolamo Savonarola, Guillaume Budé Memengaruhi Desiderius Erasmus John Colet (Januari 1467 – 16 September 1519) adalah seorang gerejawan dan pionir edukasional Inggris. John Colet adalah t...

 

しんひだかちょう 新ひだか町 二十間道路の桜並木(日本さくら名所100選) 新ひだか町旗2006年7月14日制定 新ひだか町章2006年7月14日制定 国 日本地方 北海道地方都道府県 北海道(日高振興局)郡 日高郡市町村コード 01610-1法人番号 8000020016101 面積 1,147.55km2総人口 20,646人 [編集](住民基本台帳人口、2023年10月31日)人口密度 18人/km2隣接自治体 浦河郡浦河町、新冠郡新...

 

Glide bomb GBU-15 A GBU-15(V)21/BTypePrecision guided munition (PGM)Place of originUnited StatesService historyIn service1975–presentUsed byUSAFWarsDesert Storm, Operation Wooden LegProduction historyDesignerRockwell InternationalDesigned1970sVariants GBU-15(V)1/B GBU-15(V)21/B GBU-15(V)22/B SpecificationsMass2450 lb (1111 kg)[1]Length154 in (3.90 m)Diameter18.7 in (475 mm)Wingspan4 ft 11 in (1.5 m)Warhead weight2,000 ...

Book by Jacques Ellul The Technological Society AuthorJacques EllulOriginal titleLa Technique ou l'Enjeu du siècleTranslatorJohn WilkinsonCountryUnited StatesLanguageFrench, EnglishGenrePhilosophy, Sociology, Philosophy of TechnologyPublisherVintage BooksPublication date1954Published in English1964Pages332 The Technological Society is a book on the subject of technique by French philosopher, theologian and sociologist Jacques Ellul. Originally published in French in 1954, it was tr...

 

TomislavRaja KroasiaBerkuasaca. 925–928Pendahulutidak adaPenerusTrpimir IIAdipati KroasiaBerkuasaca. 910–925PendahuluMuncimirInformasi pribadiDinastiTrpimirovićAyahMuncimir (diduga)AgamaKristen Tomislav (pelafalan Serbo-Kroasia: [tǒmislaʋ], bahasa Latin: Tamisclaus) adalah Raja Kroasia pertama. Ia menjadi Adipati Kroasia sekitar tahun 910, lalu diangkat menjadi raja pada 925 dan memerintah hingga tahun 928. Semasa pemerintahannya, Kroasia menjalin aliansi dengan Ke...

 

الدوري الإنجليزي لكرة القدم 1920–21 تفاصيل الموسم دوري كرة القدم الإنجليزية  النسخة 29  البلد المملكة المتحدة  البطل نادي بيرنلي  الدوري الإنجليزي لكرة القدم 1919–20  الدوري الإنجليزي لكرة القدم 1921–22  تعديل مصدري - تعديل   الدوري الإنجليزي لكرة القدم 1920–21 (بال...

Women role-related cinema Part of a series onWomen in society Society Women's history (legal rights) Woman Animal advocacy Business Female entrepreneurs Gender representation on corporate boards of directors Economic development Explorers and travelers Education Feminism Womyn Government Conservatives in the US Heads of state or government Legislators Queen regnant List Health Journalism Law Law enforcement Military Mother Nobel Prize laureates Piracy Positions of power Reproductive righ...

 

Private, day, college-prep school in the United StatesMid-Pacific InstituteMid-Pacific Institute sealLocation2445 Kaala StreetHonolulu, Hawaii 96822United StatesCoordinates21°18′12″N 157°49′01″W / 21.303269°N 157.816933°W / 21.303269; -157.816933InformationTypePrivate, Day, College-prepReligious affiliation(s)ChristianEstablished1908 (1908)PresidentPaul TurnbullGradesPre-K–12Enrollment1,550Campus size38 acres (0.15 km2)Campus typeUrbanColor(s)&#...

 

PausSergius IIIAwal masa kepausan29 Januari 904Akhir masa kepausan14 April 911PendahuluLeo VPenerusAnastasius IIIInformasi pribadiNama lahirSergiusLahirtanggal tidak diketahuiRoma, ItaliaMeninggal14 April 911Roma, ItaliaPaus lainnya yang bernama Sergius Paus Sergius III, nama lahir Sergius (???-14 April 911), adalah Paus Gereja Katolik Roma sejak 29 Januari 904 hingga 14 April 911. Sergius III adalah pendukung Paus Stefanus VI yang bertanggung jawab atas pengadilan Sinode Jenazah yang mengutu...

BoDeans discographyStudio albums13Live albums4Compilation albums2Video albums3Music videos11Singles7B-sides2 BoDeans is an American rock band. The band has released 14 studio albums, four live albums, seven singles, and two compilation albums. Albums Studio albums Year Album US[1] AUS[2] 1986 Love & Hope & Sex & Dreams 115 97 1987 Outside Looking In 86 72 1989 Home 94 - 1991 Black and White 105 - 1993 Go Slow Down 127 - 1996 Blend 132 - 2004 Resolution 194 - 2008 S...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Music of Guangdong – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Music of China Timeline General topics Instruments Musicology Orchestra Genres C-pop: (Cantopop, Mandopop, Hokkien pop) Rock Heavy metal Hip hop ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Lotus Eleven – news · newspapers · books · scholar · JSTOR (March 2018) (Learn how and when to remove this template message) Motor vehicle Lotus ElevenA Lotus Eleven at Donington Park in 2007OverviewManufacturerLotus carsProduction1956–1958DesignerFrank Costi...

1917 German filmWedding in the Eccentric ClubDirected byJoe MayWritten byFritz LangJoe MayProduced byJoe MayStarringHarry LiedtkeKäthe HaackBruno KastnerCinematographyCarl HoffmannProductioncompanyMay-FilmRelease date27 April 1917CountryGermanyLanguagesSilentGerman intertitles Wedding in the Eccentric Club (German: Die Hochzeit im Excentricclub) is a 1917 German silent crime action film directed by Joe May and starring Harry Liedtke, Käthe Haack and Bruno Kastner.[1] It was part of ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2020) حكم الانقضاء أو شرط الانقضاء في السياسة العامة هو إجراء ضمن قانون أساسي أو قانون تنظيمي أو غيرها من القوانين ينص على أن القانون يتوقف نفاذه بعد مضي مدة محددة ...

 

The Jequitinhonha on fire History Empire of Brazil NamesakeJequitinhonha River General characteristics Class and typeCorvette[1] Displacement637 tonnes Beam7.92m Draft3.81 Propulsion130hp steam engine Armament6 32-caliber guns, 1 38-caliber gun The steam corvette Jequitinhonha was a warship in the Imperial Brazilian Navy during the Paraguayan War. It took part in the Battle of Riachuelo. 1854-65 The Jequitinhonha is the only ship in the history of the Brazilian Navy to bear this name....

Seventh album in the series The Smurfs The Smurf Apprentice (L'Apprenti Schtroumpf)Cover of the French-language versionCreatorPeyoDateJanuary 1971SeriesThe SmurfsPage count54 pagesPublisherDupuisOriginal publicationLanguageFrenchChronologyPreceded byThe Astrosmurf (1970)Followed byHistoires de Schtroumpfs (1972) The Smurf Apprentice (original French title L'Apprenti Schtroumpf) is the seventh album of the original French-language Smurfs comic series created by Belgian artist...

 

Artikel ini sudah memiliki daftar referensi, bacaan terkait, atau pranala luar, tetapi sumbernya belum jelas karena belum menyertakan kutipan pada kalimat. Mohon tingkatkan kualitas artikel ini dengan memasukkan rujukan yang lebih mendetail bila perlu. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus....

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!