Microsoft FUSE Labs
|
Read other articles:
Former category of open-wheel single-seater racingThis article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Formula 3000 – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message) Formula 3000 car in 2003 Formula 3000 car in 2022, Slovak hillclimb championship For...
Pemandangan Tempat Ziarah Bunda dari Lourdes dari kastil kota Basilika Maria Dikandung Tanpa Noda dan gua Maria Massabielle. Tempat Ziarah Bunda dari Lourdes dari tepi Gave de Pau. Tempat Ziarah Bunda Maria dari Lourdes (Prancis: Sanctuaire de Notre-Dame de Lourdes; bahasa Oksitan: Santuari de Nòstra Senhora de Lorda) adalah Gua Maria Katolik dan tempat ziarah yang didedikasikan untuk Bunda dari Lourdes di kota Lourdes, Hautes-Pyrénées, Prancis. Tempat kudus ini mencakup beberapa b...
باقة الشرقية الإحداثيات 32°24′38″N 35°04′09″E / 32.410583333333°N 35.069141666667°E / 32.410583333333; 35.069141666667 تقسيم إداري البلد دولة فلسطين التقسيم الأعلى محافظة طولكرم خصائص جغرافية المساحة 4.2 كيلومتر مربع معلومات أخرى منطقة زمنية ت ع م+02:00، وت ع م+03:00 تعديل مصد
120 1206 Stasiun Kota Halte TransjakartaHalte Kota baru di sisi utara Stasiun Jakarta Kota, 2022LetakKotaJakarta BaratDesa/kelurahanPinangsia, Taman SariKodepos11110AlamatJalan Pintu Besar UtaraKoordinat6°08′16″S 106°48′50″E / 6.1377°S 106.8139°E / -6.1377; 106.8139Koordinat: 6°08′16″S 106°48′50″E / 6.1377°S 106.8139°E / -6.1377; 106.8139Desain HalteStruktur BRT, median jalan bebas 1 tengah Pintu masukMelalui ramp di...
Galaxy in the constellation Virgo NGC 4781Hubble Space Telescope image of NGC 4781Observation data (J2000 epoch)ConstellationVirgoRight ascension12h 54m 23s[1]Declination−10° 32′ 13″[1]Redshift0000[2]Heliocentric radial velocity000 ± 0 km/s[2]Apparent magnitude (B)11.8[1]CharacteristicsTypeSB(rs)d[2]Other designationsNGC 4781, LEDA 43902, IRAS 12517-1015[1] NGC 4781 is a barred spiral galaxy in the cons...
Sterlitamak single-member constituency Constituency of the Russian State DumaDeputyDinar GilmutdinovUnited RussiaFederal subjectRepublic of BashkortostanDistrictsAlsheyevsky, Aurgazinsky, Belebeyevsky, Bizhbulyaksky, Gafuriysky, Ishimbaysky, Miyakinsky, Sterlitamak, Sterlitamaksky, Yermekeyevsky[1]Voters502,740 (2021)[2] The Sterlitamak constituency (No.8[a]) is a Russian legislative constituency in Bashkortostan. The constituency covers south-central Bashkiria and anc...
Theodorus Marinus Roest van Limburg kan verwijzen naar: Nederlands staatsman (1806-1887): Theodorus Marinus Roest van Limburg (1806) hoofdcommissarissen van Rotterdam en later Amsterdam (1865-1935): Theodorus Marinus Roest van Limburg (1865) Bekijk alle artikelen waarvan de titel begint met Theodorus Marinus Roest van Limburg of met Theodorus Marinus Roest van Limburg in de titel. Dit is een doorverwijspagina, bedoeld om de verschillen in betekenis of gebruik van Theo...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Cabo Espichel – berita · surat kabar · buku · cendekiawan · JSTOR Cabo Espichel. Cabo Espichel (lit. Tanjung Espichel) adalah sebuah tanjung yang terletak di sebelah barat Sesimbra, Portugal. Wisatawan s...
Chinese politician In this Chinese name, the family name is Huang. Huang Xingguo黄兴国Huang Xingguo speaks at the Annual Meeting of the New Champions in Tianjin in September 2010.Communist Party Secretary of TianjinActingIn office30 December 2014 – September 2016Preceded bySun ChunlanSucceeded byLi HongzhongMayor of TianjinIn officeDecember 2007 – September 2016(Acting until January 2008)Preceded byDai XianglongSucceeded byWang Dongfeng Personal detailsBorn (1954-10-0...
2019 animated film The Little Dragon redirects here. For the Swedish electronic music band, see Little Dragon. ClaraUkrainianКлара та чарівний дракон Directed byOleksandr KlymenkoScreenplay byOleksandr KlymenkoSerhii GrabarProduced bySvitlana PonomarenkoYuriy LevchukMusic byIvan RozynMax SmogolZakhar DzyubenkoNikita MoiseevProductioncompanyImage PicturesRelease date26 October 2019Running time87 minutesCountryUkraineLanguageUkrainianBox office$575,151[1] Clara (Ukr...
Ottoman princess (1926–2008) Rana HanımsultanBorn1926Paris, FranceDiedApril 2008 (aged 81–82)Istanbul, TurkeyBurial17 April 2008Yahya Efendi Mausoleum, Beşiktaş, IstanbulSpouse Sadi Eldem (m. 1949; died 1995)IssueCeyda EldemNecla EldemEdhem EldenDynastyOttomanFatherMehmet Kamil KilligilMotherNaciye SultanAlma materSorbonne University Rana Hanımsultan, also known as Rana Eldem, (1926–2008) was an Ottoman princess and a...
Tendency of some substituents on a cyclohexane ring to prefer axial orientation The α- and β-anomers of D-glucopyranose. In organic chemistry, the anomeric effect or Edward-Lemieux effect (after J. T. Edward and Raymond Lemieux) is a stereoelectronic effect that describes the tendency of heteroatomic substituents adjacent to a heteroatom within a cyclohexane ring to prefer the axial orientation instead of the less-hindered equatorial orientation that would be expected from steric considerat...
Запрос «Новая немецкая волна» перенаправляется сюда; о движении в кинематографе см. Новое немецкое кино. Neue Deutsche Welle Направление рок-музыка Истоки Панк, новая волна Время и место возникновения Конец 1970-х, Германия Neue Deutsche Welle (с нем. — «новая немецкая волна», чит...
1919 film The Isle of ConquestNorma Talmadge and Wyndham StandingDirected byEdward JoseWritten byJohn Emerson (scenario)Anita Loos (scenario)Based onBy Right of Conquestby Arthur Hornblow, Jr.Produced byJoseph SchenckNorma TalmadgeStarringNorma TalmadgeCinematographyDavid AbelDistributed bySelect PicturesRelease date October 26, 1919 (1919-10-26) (United States) Running time72 mins.60 mins. (United States)CountryUnited StatesLanguageSilent (English intertitles) The Isle of ...
Викиданныеангл. Wikidata URL wikidata.org Коммерческий нет Тип сайта содержательный проект Викимедиа[d], семантическая вики, вики с переключением алфавита[d], MediaWiki-сайт[d], база знаний, онлайновая база данных[d], граф знаний[d], краудсорсинговый проект[d] и самоизоб...
Toronto-Dominion Bank Tipo negocio, establecimiento crediticio y empresa de capital abiertoISIN CA8911605092Industria servicios financierosForma legal Corporación canadienseFundación 1855Sede central Toronto-Dominion Centre (Canadá)Filiales Td SecuritiesTD Bank, N.A.Sitio web www.td.com[editar datos en Wikidata] El Toronto-Dominion Bank (en francés: Banque Toronto-Dominion) es una corporación multinacional canadiense de servicios bancarios y financieros con sede en Toronto, Ont...
Australian state election 1927 Western Australian state election ← 1924 26 March 1927 1930 → All 50 seats in the Western Australian Legislative Assembly First party Second party Leader Philip Collier James Mitchell Party Labor Nationalist/Country coalition Leader since 16 April 1917 17 May 1919 Leader's seat Boulder Northam Last election 27 seats 23 seats Seats won 27 seats 23 seats Seat change 0 0 Percentage 45.33% 52.82% Swing 4.9...
This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (July 2016) The Entrance of the flower (Valencian: L'entrà de la flor, Spanish: La entrada de la flor) is celebrated on 1 February in Torrent, Valencian Community, Spain. The traditional Entrance of the flower is a deep-rooted festivity in the municipality that traces back to the 17th century, in which the clavarios and members of the Confrerie of the Mothe...
Setoclavine Names IUPAC name 6,8β-Dimethyl-9,10-didehydroergolin-8α-ol Systematic IUPAC name (6aR,9S)-7,9-Dimethyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinolin-9-ol Identifiers CAS Number 519-12-0 Y 3D model (JSmol) Interactive image ChemSpider 9657036 PubChem CID 11482216 UNII UE9HT9P885 Y InChI InChI=1S/C16H18N2O/c1-16(19)7-12-11-4-3-5-13-15(11)10(8-17-13)6-14(12)18(2)9-16/h3-5,7-8,14,17,19H,6,9H2,1-2H3/t14-,16+/m1/s1Key: BGVUWLLRNRBDAY-ZBFHGGJFSA-N SMILES O[C@]3(/C=C2/c4cc...
Теорія інваріантів — розділ абстрактної алгебри, який вивчає дії груп на алгебраїчних многовидах з точки зору їх впливу на функції визначені на цих многовидах. Класично, теорія розглядає питання про явного опису многочленів, які не змінюються, або є інваріантними, відно...