Mechanism design, sometimes called implementation theory or institutiondesign,[1] is a branch of economics, social choice, and game theory that deals with designing game forms (or mechanisms) to implement a given social choice function. Because it starts with the end of the game (an optimal result) and then works backwards to find a game that implements it, it is sometimes described as reverse game theory.[2]
Mechanism design studies solution concepts for a class of private-information games. Leonid Hurwicz explains that "in a design problem, the goal function is the main given, while the mechanism is the unknown. Therefore, the design problem is the inverse of traditional economic theory, which is typically devoted to the analysis of the performance of a given mechanism."[3]
One person, called the "principal", would like to condition his behavior on information privately known to the players of a game. For example, the principal would like to know the true quality of a used car a salesman is pitching. He cannot learn anything simply by asking the salesman, because it is in the salesman's interest to distort the truth. However, in mechanism design, the principal does have one advantage: He may design a game whose rules influence others to act the way he would like.
Without mechanism design theory, the principal's problem would be difficult to solve. He would have to consider all the possible games and choose the one that best influences other players' tactics. In addition, the principal would have to draw conclusions from agents who may lie to him. Thanks to the revelation principle, the principal only needs to consider games in which agents truthfully report their private information.
Foundations
Mechanism
A game of mechanism design is a game of private information in which one of the agents, called the principal, chooses the payoff structure. Following Harsanyi (1967), the agents receive secret "messages" from nature containing information relevant to payoffs. For example, a message may contain information about their preferences or the quality of a good for sale. We call this information the agent's "type" (usually noted and accordingly the space of types ). Agents then report a type to the principal (usually noted with a hat ) that can be a strategic lie. After the report, the principal and the agents are paid according to the payoff structure the principal chose.
The timing of the game is:
The principal commits to a mechanism that grants an outcome as a function of reported type
The agents report, possibly dishonestly, a type profile
The mechanism is executed (agents receive outcome )
In order to understand who gets what, it is common to divide the outcome into a goods allocation and a money transfer, where stands for an allocation of goods rendered or received as a function of type, and stands for a monetary transfer as a function of type.
As a benchmark the designer often defines what should happen under full information. Define a social choice function mapping the (true) type profile directly to the allocation of goods received or rendered,
In contrast a mechanism maps the reported type profile to an outcome (again, both a goods allocation and a money transfer )
A proposed mechanism constitutes a Bayesian game (a game of private information), and if it is well-behaved the game has a Bayesian Nash equilibrium. At equilibrium agents choose their reports strategically as a function of type
It is difficult to solve for Bayesian equilibria in such a setting because it involves solving for agents' best-response strategies and for the best inference from a possible strategic lie. Thanks to a sweeping result called the revelation principle, no matter the mechanism a designer can[5] confine attention to equilibria in which agents truthfully report type. The revelation principle states: "To every Bayesian Nash equilibrium there corresponds a Bayesian game with the same equilibrium outcome but in which players truthfully report type."
This is extremely useful. The principle allows one to solve for a Bayesian equilibrium by assuming all players truthfully report type (subject to an incentive compatibility constraint). In one blow it eliminates the need to consider either strategic behavior or lying.
Its proof is quite direct. Assume a Bayesian game in which the agent's strategy and payoff are functions of its type and what others do, . By definition agent i's equilibrium strategy is Nash in expected utility:
Simply define a mechanism that would induce agents to choose the same equilibrium. The easiest one to define is for the mechanism to commit to playing the agents' equilibrium strategies for them.
Under such a mechanism the agents of course find it optimal to reveal type since the mechanism plays the strategies they found optimal anyway. Formally, choose such that
The designer of a mechanism generally hopes either
to design a mechanism that "implements" a social choice function
to find the mechanism that maximizes some value criterion (e.g. profit)
To implement a social choice function is to find some transfer function that motivates agents to pick . Formally, if the equilibrium strategy profile under the mechanism maps to the same goods allocation as a social choice function,
we say the mechanism implements the social choice function.
Thanks to the revelation principle, the designer can usually find a transfer function to implement a social choice by solving an associated truthtelling game. If agents find it optimal to truthfully report type,
we say such a mechanism is truthfully implementable. The task is then to solve for a truthfully implementable and impute this transfer function to the original game. An allocation is truthfully implementable if there exists a transfer function such that
which is also called the incentive compatibility (IC) constraint.
In applications, the IC condition is the key to describing the shape of in any useful way. Under certain conditions it can even isolate the transfer function analytically. Additionally, a participation (individual rationality) constraint is sometimes added if agents have the option of not playing.
Necessity
Consider a setting in which all agents have a type-contingent utility function . Consider also a goods allocation that is vector-valued and size (which permits number of goods) and assume it is piecewise continuous with respect to its arguments.
The function is implementable only if
whenever and and x is continuous at . This is a necessary condition and is derived from the first- and second-order conditions of the agent's optimization problem assuming truth-telling.
Its meaning can be understood in two pieces. The first piece says the agent's marginal rate of substitution (MRS) increases as a function of the type,
In short, agents will not tell the truth if the mechanism does not offer higher agent types a better deal. Otherwise, higher types facing any mechanism that punishes high types for reporting will lie and declare they are lower types, violating the truthtelling incentive-compatibility constraint. The second piece is a monotonicity condition waiting to happen,[clarification needed]
which, to be positive, means higher types must be given more of the good.
There is potential for the two pieces to interact. If for some type range the contract offered less quantity to higher types , it is possible the mechanism could compensate by giving higher types a discount. But such a contract already exists for low-type agents, so this solution is pathological. Such a solution sometimes occurs in the process of solving for a mechanism. In these cases it must be "ironed". In a multiple-good environment it is also possible for the designer to reward the agent with more of one good to substitute for less of another (e.g. butter for margarine). Multiple-good mechanisms are an area of continuing research in mechanism design.
Sufficiency
Mechanism design papers usually make two assumptions to ensure implementability:
This is known by several names: the single-crossing condition, the sorting condition and the Spence–Mirrlees condition. It means the utility function is of such a shape that the agent's MRS is increasing in type.[clarification needed]
This is a technical condition bounding the rate of growth of the MRS.
These assumptions are sufficient to provide that any monotonic is implementable (a exists that can implement it). In addition, in the single-good setting the single-crossing condition is sufficient to provide that only a monotonic is implementable, so the designer can confine his search to a monotonic .
Vickrey (1961) gives a celebrated result that any member of a large class of auctions assures the seller of the same expected revenue and that the expected revenue is the best the seller can do. This is the case if
The buyers have identical valuation functions (which may be a function of type)
The type distribution bears the monotone hazard rate property
The mechanism sells the good to the buyer with the highest valuation
The last condition is crucial to the theorem. An implication is that for the seller to achieve higher revenue he must take a chance on giving the item to an agent with a lower valuation. Usually this means he must risk not selling the item at all.
The Vickrey (1961) auction model was later expanded by Clarke (1971) and Groves to treat a public choice problem in which a public project's cost is borne by all agents, e.g. whether to build a municipal bridge. The resulting "Vickrey–Clarke–Groves" mechanism can motivate agents to choose the socially efficient allocation of the public good even if agents have privately known valuations. In other words, it can solve the "tragedy of the commons"—under certain conditions, in particular quasilinear utility or if budget balance is not required.
Consider a setting in which number of agents have quasilinear utility with private valuations where the currency is valued linearly. The VCG designer designs an incentive compatible (hence truthfully implementable) mechanism to obtain the true type profile, from which the designer implements the socially optimal allocation
The cleverness of the VCG mechanism is the way it motivates truthful revelation. It eliminates incentives to misreport by penalizing any agent by the cost of the distortion he causes. Among the reports the agent may make, the VCG mechanism permits a "null" report saying he is indifferent to the public good and cares only about the money transfer. This effectively removes the agent from the game. If an agent does choose to report a type, the VCG mechanism charges the agent a fee if his report is pivotal, that is if his report changes the optimal allocation x so as to harm other agents. The payment is calculated
which sums the distortion in the utilities of the other agents (and not his own) caused by one agent reporting.
Myerson and Satterthwaite (1983) show there is no efficient way for two parties to trade a good when they each have secret and probabilistically varying valuations for it, without the risk of forcing one party to trade at a loss. It is among the most remarkable negative results in economics—a kind of negative mirror to the fundamental theorems of welfare economics.
Phillips and Marden (2018) proved that for cost-sharing games with concave cost functions, the optimal cost-sharing rule that firstly optimizes the worst-case inefficiencies in a game (the price of anarchy), and then secondly optimizes the best-case outcomes (the price of stability), is precisely the Shapley value cost-sharing rule.[6] A symmetrical statement is similarly valid for utility-sharing games with convex utility functions.
Price discrimination
Mirrlees (1971) introduces a setting in which the transfer function t() is easy to solve for. Due to its relevance and tractability it is a common setting in the literature. Consider a single-good, single-agent setting in which the agent has quasilinear utility with an unknown type parameter
and in which the principal has a prior CDF over the agent's type . The principal can produce goods at a convex marginal cost c(x) and wants to maximize the expected profit from the transaction
subject to IC and IR conditions
The principal here is a monopolist trying to set a profit-maximizing price scheme in which it cannot identify the type of the customer. A common example is an airline setting fares for business, leisure and student travelers. Due to the IR condition it has to give every type a good enough deal to induce participation. Due to the IC condition it has to give every type a good enough deal that the type prefers its deal to that of any other.
A trick given by Mirrlees (1971) is to use the envelope theorem to eliminate the transfer function from the expectation to be maximized,
Integrating,
where is some index type. Replacing the incentive-compatible in the maximand,
after an integration by parts. This function can be maximized pointwise.
Because is incentive-compatible already the designer can drop the IC constraint. If the utility function satisfies the Spence–Mirrlees condition then a monotonic function exists. The IR constraint can be checked at equilibrium and the fee schedule raised or lowered accordingly. Additionally, note the presence of a hazard rate in the expression. If the type distribution bears the monotone hazard ratio property, the FOC is sufficient to solve for t(). If not, then it is necessary to check whether the monotonicity constraint (see sufficiency, above) is satisfied everywhere along the allocation and fee schedules. If not, then the designer must use Myerson ironing.
Myerson ironing
In some applications the designer may solve the first-order conditions for the price and allocation schedules yet find they are not monotonic. For example, in the quasilinear setting this often happens when the hazard ratio is itself not monotone. By the Spence–Mirrlees condition the optimal price and allocation schedules must be monotonic, so the designer must eliminate any interval over which the schedule changes direction by flattening it.
Intuitively, what is going on is the designer finds it optimal to bunch certain types together and give them the same contract. Normally the designer motivates higher types to distinguish themselves by giving them a better deal. If there are insufficiently few higher types on the margin the designer does not find it worthwhile to grant lower types a concession (called their information rent) in order to charge higher types a type-specific contract.
Consider a monopolist principal selling to agents with quasilinear utility, the example above. Suppose the allocation schedule satisfying the first-order conditions has a single interior peak at and a single interior trough at , illustrated at right.
Following Myerson (1981) flatten it by choosing satisfying where is the inverse function of x mapping to and is the inverse function of x mapping to . That is, returns a before the interior peak and returns a after the interior trough.
If the nonmonotonic region of borders the edge of the type space, simply set the appropriate function (or both) to the boundary type. If there are multiple regions, see a textbook for an iterative procedure; it may be that more than one troughs should be ironed together.
Proof
The proof uses the theory of optimal control. It considers the set of intervals in the nonmonotonic region of over which it might flatten the schedule. It then writes a Hamiltonian to obtain necessary conditions for a within the intervals
that does satisfy monotonicity
for which the monotonicity constraint is not binding on the boundaries of the interval
Condition two ensures that the satisfying the optimal control problem reconnects to the schedule in the original problem at the interval boundaries (no jumps). Any satisfying the necessary conditions must be flat because it must be monotonic and yet reconnect at the boundaries.
As before maximize the principal's expected payoff, but this time subject to the monotonicity constraint
and use a Hamiltonian to do it, with shadow price
where is a state variable and the control. As usual in optimal control the costate evolution equation must satisfy
Taking advantage of condition 2, note the monotonicity constraint is not binding at the boundaries of the interval,
meaning the costate variable condition can be integrated and also equals 0
The average distortion of the principal's surplus must be 0. To flatten the schedule, find an such that its inverse image maps to a interval satisfying the condition above.
^In unusual circumstances some truth-telling games have more equilibria than the Bayesian game they mapped from. See Fudenburg-Tirole Ch. 7.2 for some references.
^Phillips, Matthew; Marden, Jason R. (July 2018). "Design Tradeoffs in Concave Cost-Sharing Games". IEEE Transactions on Automatic Control. 63 (7): 2242–2247. doi:10.1109/tac.2017.2765299. ISSN0018-9286. S2CID45923961.
Harsanyi, John C. (1967). "Games with incomplete information played by "Bayesian" players, I-III. part I. The Basic Model". Management Science. 14 (3): 159–182. doi:10.1287/mnsc.14.3.159. JSTOR2628393.
Satterthwaite, Mark Allen (1975). "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions". Journal of Economic Theory. 10 (2): 187–217. CiteSeerX10.1.1.471.9842. doi:10.1016/0022-0531(75)90050-2.
Roger B. Myerson (2008), "Mechanism Design", The New Palgrave Dictionary of Economics Online, Abstract.
Diamantaras, Dimitrios (2009), A Toolbox for Economic Design, New York: Palgrave Macmillan, ISBN978-0-230-61060-6. A graduate text specifically focused on mechanism design.
Artikel ini sudah memiliki daftar referensi, bacaan terkait, atau pranala luar, tetapi sumbernya belum jelas karena belum menyertakan kutipan pada kalimat. Mohon tingkatkan kualitas artikel ini dengan memasukkan rujukan yang lebih mendetail bila perlu. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)Vedi R. HadizBiografiKelahiran1964 (58/59 tahun)Data pribadiPendidikanUniversitas Indonesia KegiatanSpesialisasiSosiologi politik PekerjaanSosiolog, staf pengajar universitas da...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gonks Go Beat – news · newspapers · books · scholar · JSTOR (March 2012) (Learn how and when to remove this...
Dutch footballer (born 1983) Klaas-Jan Huntelaar Huntelaar in 2015Personal informationFull name Dirk Jan Klaas Huntelaar[1]Date of birth (1983-08-12) 12 August 1983 (age 40)Place of birth Voor-Drempt, NetherlandsHeight 1.86 m (6 ft 1 in)[2]Position(s) StrikerYouth career1988–1994 VV H. en K.1994–2000 De Graafschap2000–2002 PSV EindhovenSenior career*Years Team Apps (Gls)2002–2004 PSV Eindhoven 1 (0)2003 → De Graafschap (loan) 9 (0)2003–2004 → ...
Léon-Paul FargueLahir(1876-03-04)4 Maret 1876ParisMeninggal24 November 1947(1947-11-24) (umur 71)ParisPekerjaanWriterKebangsaanFrenchPeriode20th centuryGenrePoetry, essays Fargue (left) with Maurice Ravel, Georges Auric and Paul Morand in 1927 Léon-Paul Fargue (pengucapan bahasa Prancis: [leɔ̃ pɔl faʁɡ], 4 March 1876 – 24 November 1947) adalah seorang penyair dan penulis esai Prancis. Ia lahir di Paris, Prancis, di rue Coquilliére.[1] Sebagai seorang p...
2009 Danish filmApplause (2009)Danish theatrical posterDirected byMartin ZandvlietWritten byAnders AugustMartin ZandvlietProduced byMikael Christian RieksStarringPaprika SteenCinematographyJesper TøffnerEdited byPer SandholtMusic bySune MartinRelease date September 25, 2009 (2009-09-25) Running time85 minutesCountryDenmarkLanguageDanishBudgetDKK 3.6 million Applause (Danish: Applaus) is a 2009 Danish film starring Paprika Steen from director/co-writer Martin Peter Zandvliet an...
Frontera entre Brasil y Francia Localización de Francia (naranja) y Brasil (verde). Mapa de la frontera entre Brasil y la Guayana Francesa (Francia) Brasil Brasil Francia Longitud total 730 kmHistoriaCreación 1713 (Tratado de Utrecht)Trazado actual 1900[editar datos en Wikidata] La frontera entre la República Federativa de Brasil y la República Francesa es un límite internacional continuo que delimita los territorios nacionales de ambos países colindantes en el nore...
Сен-П'єрр-де-Коломб'єSaint-Pierre-de-Colombier Країна Франція Регіон Овернь-Рона-Альпи Департамент Ардеш Округ Ларжантьєр Кантон Бюрзе Код INSEE 07282 Поштові індекси 07450 Координати 44°42′19″ пн. ш. 4°15′47″ сх. д.H G O Висота 360 - 1 062 м.н.р.м. Площа 9,43 км² Населення 440 (01-2020[1]...
Home in Johannesburg, South AfricaJames Mpanza HouseThe Blue Plaque on Mpanza's houseGeneral informationTypehomeAddressHlatywayo StreetTown or cityJohannesburgCountrySouth AfricaCoordinates26°13′55″S 27°55′42″E / 26.2319°S 27.92832°E / -26.2319; 27.92832 The James Mpanza House is a simple house in Orlando near Johannesburg. James Mpanza was a champion for the rights of black South Africans to have homes. His house was where he and his family lived and it wa...
Nota: Não confundir com Escola Nacional de Saúde Pública. Escola Nacional de Saúde Pública Sérgio Arouca Organização Missão Formar profissionais, gerar e compartilhar conhecimentos e práticas no sentido de promover o direito à saúde e a melhoria das condições de vida da população. Dependência Fiocruz Chefia Marco Menezes, Diretor[1] Localização Sede Rio de Janeiro, Rio de Janeiro Histórico Sítio na internet ensp.fiocruz.br A Escola Nacional de Saúde Púb...
Vista lateral de una hélice 310 de residuos de alanina. En magenta se señalan dos enlaces de hidrógeno al mismo grupo peptídico; la distancia oxígeno-hidrógeno es de 1,83 Å. La cadena de la proteína se dirige hacia arriba; su extremo N-terminal está abajo y el C-terminal arriba. Las cadenas laterales apuntan ligeramente hacia el extremo N-terminal. Una hélice 310 es un tipo de estructura secundaria de proteínas poco común. Son más estrechas y más lárgas que una hélice alfa. Es...
Park in Ponce, Puerto Rico Parque Ecológico UrbanoEntrance to Parque Ecologico Urbano in Barrio San Anton, Ponce, Puerto RicoTypePassive parkLocationBarrio San Antón, in Ponce, Puerto RicoCoordinates18°00′43.6314″N 66°36′25.092″W / 18.012119833°N 66.60697000°W / 18.012119833; -66.60697000Area6 cuerdas[2]Created19 September 2012DesignerBonnin Orozco Arquitectos[1]Operated byLuisa Hernández Alicea, Park Administrator,[3] for th...
United States national laboratory This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (January 2021) (Learn how and whe...
Províncias e o Município Neutro no território do Império do Brasil em 1889. As províncias foram subdivisões do território brasileiro, criadas no Reino do Brasil e herdadas pelo Império do Brasil. Foram instituídas após a transformação das capitanias em províncias ultramarinas, pelas Cortes Gerais e Extraordinárias da Nação Portuguesa, ocorrida em 28 de fevereiro de 1821, ainda no âmbito do Reino Unido de Portugal, Brasil e Algarves. A Constituição de 1824 criou o Conselho G...
Subfamily of moths Pangraptinae Episparis taiwana. Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Lepidoptera Superfamily: Noctuoidea Family: Erebidae Subfamily: PangraptinaeGrote, 1882 The Pangraptinae are a subfamily of moths in the family Erebidae. Taxonomy Phylogenetic analysis only weakly supports the subfamily as a clade but determines that the clade containing the Aganainae, Herminiinae (litter moths), and Arctiinae (tiger and lic...
Wout van Aert Informação pessoal Nome nativo Wout van Aert Nascimento 15 de setembro de 1994 (29 anos)Herentals Estatura 187 cm Cidadania Bélgica Ocupação ciclista desportivo (en) Prémios Belgian Sportsman of the year, Flandrien of the Year, Flandrien of the Year, Flandrien of the Year Informação equipa Equipa atual Team Jumbo-Visma Desporto Ciclismo Disciplina Ciclocross e estrada Função ciclocross, Sprinter e contrarrelógio Tipo de corredor Classic...
2013 studio album by Marc Anthony3.0Studio album by Marc AnthonyReleasedJuly 23, 2013Recorded2011–13Genre Salsa tropical Bolero Length41:26Label Sony Music Latin Columbia ProducerSergio GeorgeMarc Anthony chronology Iconos(2010) 3.0(2013) Opus(2019) Singles from 3.0 Vivir Mi VidaReleased: April 26, 2013 Cambio de PielReleased: October 10, 2013 Flor PálidaReleased: October 17, 2014 Volver a ComenzarReleased: October 4, 2015 Professional ratingsReview scoresSourceRatingAllMusic...
Japanese anime television series Mighty Cat Masked Niyanderニャニがニャンだー ニャンダーかめん(Nyani ga nyandā Nyandā Kamen)GenreAction, Adventure, Comedy Anime television seriesDirected byTsutomu ShibayamaWritten byTakashi YanaseMasaaki SakuraiMusic byKazuaki MiyajiStudioSunriseOriginal networkNagoya Broadcasting Network TV AsahiOriginal run February 6, 2000 – September 30, 2001Episodes83 Mighty Cat Masked Niyander (Japanese: ニャニがニャンだー ...
Krachi Westconstituencyfor the Parliament of GhanaDistrictKrachi DistrictRegionOti Region of GhanaCurrent constituencyPartyNational Democratic CongressMPHelen Ntoso Krachi West is one of the constituencies represented in the Parliament of Ghana. It elects one Member of Parliament (MP) by the first past the post system of election. Krachi West is located in the Krachi district of the Oti Region of Ghana. Boundaries The seat is located within the Krachi West district of the Volta Region of Ghan...
2022 EP by Gang of YouthsImmolation TapeEP by Gang of YouthsReleased20 May 2022RecordedMarch 2022StudioSirius XMUnited StatesGenreIndie folkbaroque popLength18:05LabelMosy RecordingsProducerGang of YouthsGang of Youths chronology Angel in Realtime(2022) Immolation Tape(2022) Triple J Like a Version Sessions(2022) Singles from Immolation Tape Shot in the ArmReleased: 10 March 2022[1] Immolation Tape (stylised in all-lowercase) is the third extended play by Australian alternativ...
Невський проспектрос. Невский проспект Жанр ПовістьФорма повість[d]Автор Гоголь Микола ВасильовичМова російськаНаписано 1833-1834Опубліковано Арабески 1835 рікПереклад Українською твір переклав Євген ПлужникЦикл Петербурзькі повістіНаступний твір Портрет (повість) &...
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!