Few large-scale marine prototypes have been built, limited by the low electrical conductivity of seawater. Increasing current density is limited by Joule heating and water electrolysis in the vicinity of electrodes, and increasing the magnetic field strength is limited by the cost, size and weight (as well as technological limitations) of electromagnets and the power available to feed them.[8][9] In 2023 DARPA launched the PUMP program to build a marine engine using superconducting magnets expected to reach a field strength of 20 Tesla.[10]
Stronger technical limitations apply to air-breathing MHD propulsion (where ambient air is ionized) that is still limited to theoretical concepts and early experiments.[11][12][13]
As the Lorentz force in an MHD converter does not act on a single isolated charged particle nor on electrons in a solid electrical wire, but on a continuous charge distribution in motion, it is a "volumetric" (body) force, a force per unit volume:
As induction MHD accelerators are electrodeless, they do not exhibit the common issues related to conduction systems (especially Joule heating, bubbles and redox from electrolysis) but need much more intense peak magnetic fields to operate. Since one of the biggest issues with such thrusters is the limited energy available on-board, induction MHD drives have not been developed out of the laboratory.
Both systems can put the working fluid in motion according to two main designs:
Internal flow when the fluid is accelerated within and propelled back out of a nozzle of tubular or ring-shaped cross-section, the MHD interaction being concentrated within the pipe (similarly to rocket or jet engines).
External flow when the fluid is accelerated around the whole wetted area of the vehicle, the electromagnetic fields extending around the body of the vehicle. The propulsion force results from the pressure distribution on the shell (as lift on a wing, or how ciliatemicroorganisms such as Paramecium move water around them).
Internal flow systems concentrate the MHD interaction in a limited volume, preserving stealth characteristics. External field systems on the contrary have the ability to act on a very large expanse of surrounding water volume with higher efficiency and the ability to decrease drag, increasing the efficiency even further.[15]
Marine propulsion
MHD has no moving parts, which means that a good design might be silent, reliable, and efficient. Additionally, the MHD design eliminates many of the wear and friction pieces of the drivetrain with a directly driven propeller by an engine. Problems with current technologies include expense and slow speed compared to a propeller driven by an engine.[8][9] The extra expense is from the large generator that must be driven by an engine. Such a large generator is not required when an engine directly drives a propeller.
The first prototype, a 3-meter (10-feet) long submarine called EMS-1, was designed and tested in 1966 by Stewart Way, a professor of mechanical engineering at the University of California, Santa Barbara. Way, on leave from his job at Westinghouse Electric, assigned his senior year undergraduate students to build the operational unit. This MHD submarine operated on batteries delivering power to electrodes and electromagnets, which produced a magnetic field of 0.015 tesla. The cruise speed was about 0.4 meter per second (15 inches per second) during the test in the bay of Santa Barbara, California, in accordance with theoretical predictions.[16][17][18][15]
Later, a Japanese prototype, the 3.6-meter long "ST-500", achieved speeds of up to 0.6 m/s in 1979.[19]
Small-scale ship models were later built and studied extensively in the laboratory, leading to successful comparisons between the measurements and the theoretical prediction of ship terminal speeds.[8][9]
First studies of the interaction of plasmas with hypersonic flows around vehicles date back to the late 1950s, with the concept of a new kind of thermal protection system for space capsules during high-speed reentry. As low-pressure air is naturally ionized at such very high velocities and altitude, it was thought to use the effect of a magnetic field produced by an electromagnet to replace thermal ablative shields by a "magnetic shield". Hypersonic ionized flow interacts with the magnetic field, inducing eddy currents in the plasma. The current combines with the magnetic field to give Lorentz forces that oppose the flow and detach the bow shock wave further ahead of the vehicle, lowering the heat flux which is due to the brutal recompression of air behind the stagnation point. Such passive flow control studies are still ongoing, but a large-scale demonstrator has yet to be built.[22][23]
Active flow control
Active flow control by MHD force fields on the contrary involves a direct and imperious action of forces to locally accelerate or slow down the airflow, modifying its velocity, direction, pressure, friction, heat flux parameters, in order to preserve materials and engines from stress, allowing hypersonic flight. It is a field of magnetohydrodynamics also called magnetogasdynamics, magnetoaerodynamics or magnetoplasma aerodynamics, as the working fluid is the air (a gas instead of a liquid) ionized to become electrically conductive (a plasma).
MHD studies applied to aeronautics try to extend the domain of hypersonic planes to higher Mach regimes:
Action on the boundary layer to prevent laminar flow from becoming turbulent.[26]
Shock wave mitigation for thermal control and reduction of the wave drag and form drag. Some theoretical studies suggest the flow velocity could be controlled everywhere on the wetted area of an aircraft, so shock waves could be totally cancelled when using enough power.[27][28][29]
Airflow velocity reduction upstream to feed a scramjet by the use of an MHD generator section combined with an MHD accelerator downstream at the exhaust nozzle, powered by the generator through an MHD bypass system.[32][33][34][35]
Such studies covers a field of resistive MHD with magnetic Reynolds number ≪ 1 using nonthermalweakly ionized gases, making the development of demonstrators much more difficult to realize than for MHD in liquids. "Cold plasmas" with magnetic fields are subject to the electrothermal instability occurring at a critical Hall parameter, which makes full-scale developments difficult.[43]
Prospects
MHD propulsion has been considered as the main propulsion system for both marine and space ships since there is no need to produce lift to counter the gravity of Earth in water (due to buoyancy) nor in space (due to weightlessness), which is ruled out in the case of flight in the atmosphere.
Nonetheless, considering the current problem of the electric power source solved (for example with the availability of a still missing multi-megawatt compact fusion reactor), one could imagine future aircraft of a new kind silently powered by MHD accelerators, able to ionize and direct enough air downward to lift several tonnes. As external flow systems can control the flow over the whole wetted area, limiting thermal issues at high speeds, ambient air would be ionized and radially accelerated by Lorentz forces around an axisymmetric body (shaped as a cylinder, a cone, a sphere…), the entire airframe being the engine. Lift and thrust would arise as a consequence of a pressure difference between the upper and lower surfaces, induced by the Coandă effect.[44][45] In order to maximize such pressure difference between the two opposite sides, and since the most efficient MHD converters (with a high Hall effect) are disk-shaped, such MHD aircraft would be preferably flattened to take the shape of a biconvex lens. Having no wings nor airbreathing jet engines, it would share no similarities with conventional aircraft, but it would behave like a helicopter whose rotor blades would have been replaced by a "purely electromagnetic rotor" with no moving part, sucking the air downward. Such concepts of flying MHD disks have been developed in the peer review literature from the mid 1970s mainly by physicists Leik Myrabo with the Lightcraft,[46][47][48][49][50] and Subrata Roy with the Wingless Electromagnetic Air Vehicle (WEAV).[51][52][53]
These futuristic visions have been advertised in the media although they still remain beyond the reach of modern technology.[54][11][55]
A number of experimental methods of spacecraft propulsion are based on magnetohydrodynamics. As this kind of MHD propulsion involves compressible fluids in the form of plasmas (ionized gases) it is also referred to as magnetogasdynamics or magnetoplasmadynamics.
In such electromagnetic thrusters, the working fluid is most of the time ionized hydrazine, xenon or lithium. Depending on the propellant used, it can be seeded with alkali such as potassium or caesium to improve its electrical conductivity. All charged species within the plasma, from positive and negative ions to free electrons, as well as neutral atoms by the effect of collisions, are accelerated in the same direction by the Lorentz "body" force, which results from the combination of a magnetic field with an orthogonal electric field (hence the name of "cross-field accelerator"), these fields not being in the direction of the acceleration. This is a fundamental difference with ion thrusters which rely on electrostatics to accelerate only positive ions using the Coulomb force along a high voltage electric field.
First experimental studies involving cross-field plasma accelerators (square channels and rocket nozzles) date back to the late 1950s. Such systems provide greater thrust and higher specific impulse than conventional chemical rockets and even modern ion drives, at the cost of a higher required energy density.[56][57][58][59][60][61]
Some devices also studied nowadays besides cross-field accelerators include the magnetoplasmadynamic thruster sometimes referred to as the Lorentz force accelerator (LFA), and the electrodeless pulsed inductive thruster (PIT).
Even today, these systems are not ready to be launched in space as they still lack a suitable compact power source offering enough energy density (such as hypothetical fusion reactors) to feed the power-greedy electromagnets, especially pulsed inductive ones. The rapid ablation of electrodes under the intense thermal flow is also a concern. For these reasons, studies remain largely theoretical and experiments are still conducted in the laboratory, although over 60 years have passed since the first research in this kind of thrusters.
Fiction
Oregon, a ship in the Oregon Files series of books by author Clive Cussler, has a magnetohydrodynamic drive. This allows the ship to turn very sharply and brake instantly, instead of gliding for a few miles. In Valhalla Rising, Clive Cussler writes the same drive into the powering of Captain Nemo's Nautilus.
The film adaptation of The Hunt for Red October popularized the magnetohydrodynamic drive as a "caterpillar drive" for submarines, a nearly undetectable "silent drive" intended to achieve stealth in submarine warfare. In reality, the current traveling through the water would create gases and noise, and the magnetic fields would induce a detectable magnetic signature. In the film, it was suggested that this sound could be confused with geological activity. In the novel from which the film was adapted, the caterpillar that Red October used was actually a pump-jet of the so-called "tunnel drive" type (the tunnels provided acoustic camouflage for the cavitation from the propellers).
In the Ben Bova novel The Precipice, the ship where some of the action took place, Starpower 1, built to prove that exploration and mining of the Asteroid Belt was feasible and potentially profitable, had a magnetohydrodynamic drive mated to a fusion power plant.
Lorentz force, relates electric and magnetic fields to propulsion force
References
^Dane, Abe (August 1990). "100 mph Jet Ships"(PDF). Popular Mechanics. pp. 60–62. Retrieved 2018-04-04.
^ abNormile, Dennis (November 1992). "Superconductivity goes to sea"(PDF). Popular Science. Bonnier Corporation. pp. 80–85. Retrieved 2018-04-04.
^Way, S. (15 October 1958). Examination of Bipolar Electric and Magnetic Fields for Submarine Propulsion (Report). US Navy Bureau of Ships. Preliminary Memorandum Communication.
^US patent 2997013, Warren A. Rice, "Propulsion System", issued 1961-08-22, assigned to Carl E. Grebe
^Phillips, O.M. (1962). "The prospects for magnetohydrodynamic ship propulsion". Journal of Ship Research. 43: 43–51.
^Doragh, R.A. (November 1963). "Magnetohydrodynamic Ship Propulsion using Superconducting Magnets". Transactions of the Society of Naval Architects and Marine Engineers (SNAME). 71: 370–386.
^ abPope, Gregory T. (September 1995). "Fly by microwaves"(PDF). Popular Mechanics. pp. 44–45.
^Weier, Tom; Shatrov, Victor; Gerbeth, Gunter (2007). "Flow Control and Propulsion in Poor Conductors". In Molokov, Sergei S.; Moreau, R.; Moffatt, H. Keith (eds.). Magnetohydrodynamics: Historical Evolution and Trends. Springer Science+Business Media. pp. 295–312. doi:10.1007/978-1-4020-4833-3. ISBN978-1-4020-4832-6.
^Way, S.; Devlin, C. (July 1967). "Prospects for the Electromagnetic Submarine". Paper 67-432. AIAA 3rd Propulsion Joint Specialist Conference. Washington, D.C.
^A. Iwata, Y. Saji and S. Sato, "Construction of Model Ship ST-500 with Superconducting Electromagnetic Thrust System", in Proceedings of the 8th International Cryogenic Engineering Conference (ICEC 8), edited by C. Rizzuto (IPC Science and Technology, 1980), pp. 775–784.
^Sheikin, Evgeniy G.; Kuranov, Alexander L. (2005). "Scramjet with MHD Controlled Inlet"(PDF). AIAA 2005-3223. AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Capua, Italy. doi:10.2514/6.2005-3223.
^Myrabo, Leik N.; Lewis, John S. (May 2009). Lightcraft Flight Handbook LTI-20: Hypersonic Flight Transport for an Era Beyond Oil. Collector's Guide Publishing. ISBN978-1926592039.
^Roy, Subrata; Arnold, David; Lin, Jenshan; Schmidt, Tony; Lind, Rick; et al. (20 December 2011). Air Force Office of Scientific Research; University of Florida (eds.). Demonstration of a Wingless Electromagnetic Air Vehicle(PDF) (Report). Defense Technical Information Center. ASINB01IKW9SES. AFRL-OSR-VA-TR-2012-0922. Archived(PDF) from the original on May 17, 2013.
^US patent 8382029, Subrata Roy, "Wingless hovering of micro air vehicle", issued 2013-02-26, assigned to University of Florida Research Foundation Inc
^US patent 8960595, Subrata Roy, "Wingless hovering of micro air vehicle", issued 2015-02-24, assigned to University of Florida Research Foundation Inc.
^Petit, Jean-Pierre (March 1976). "Un moteur à plasma pour ovnis" [A plasma engine for UFOs] (PDF). Science & Vie (in French). No. 702. pp. 42–49.
^Wilson, T.A. (December 1958). "Remarks on Rocket and Aerodynamic Applications of Magnetohydrodynamic Channel Flow". TN-58-1058, ASTIA 207 228. Cornell University.
^Wood, G.P.; Carter, A.F. (1960). "Considerations in the Design of a Steady D.C. Plasma Generator". Dynamics of Conducting Gases (Proceedings of the 3rd Biennial Gas Dynamics Symposium).
You can help expand this article with text translated from the corresponding article in Italian. (January 2022) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text that appears unreliable or lo...
У Вікіпедії є статті про інших людей із прізвищем Назарова. Щодо інших людей з таким самим іменем та прізвищем див. Назарова Тетяна. Назарова Тетяна Євгенівна Файл:Назарова (театр).jpgІм'я при народженні Тетяна Євгенівна НазароваНародилася 29 листопада 1960(1960-11-29) (62 роки)Бердя
Coordenadas: 46° 38' N 1° 26' E Thenay Comuna francesa Localização ThenayLocalização de Thenay na França Coordenadas 46° 38' N 1° 26' E País França Região Centro-Vale do Loire Departamento Indre Características geográficas Área total 33,71 km² População total (2018) [1] 911 hab. Densidade 27 hab./km² Código Postal 36800 Código INSEE 36220 Thenay é uma comuna francesa na região administrativa do Centro, no dep...
Basketball championship 2015 FIBA Asia ChampionshipTournament detailsHost countryChinaCityChangshaDates23 September – 3 OctoberTeams16Venue(s)2 (in 1 host city)Final positionsChampions China (16th title)Runners-up PhilippinesThird place IranFourth place JapanTournament statisticsMVP Yi Jianlian[1]Top scorer Sani Sakakini (22.4 points per game)← 2013 2017 → The 2015 FIBA Asia Championship was the 28th and last edition of the FIBA Asia Championship...
У Вікіпедії є статті про інші географічні об’єкти з назвою Сентервілл. Переписна місцевість Сентервіллангл. Centreville Координати 38°50′33″ пн. ш. 77°26′33″ зх. д. / 38.84250000002777625° пн. ш. 77.44250000002777767° зх. д. / 38.84250000002777625; -77.44250000002777767Координати: 38°50′33″...
Chemical compound AlmoxatoneClinical dataATC codenoneLegal statusLegal status In general: uncontrolled Identifiers IUPAC name (5R)-3-{4-[(3-chlorobenzyl)oxy]phenyl}-5-[(methylamino)methyl]-1,3-oxazolidin-2-one CAS Number84145-89-1 NPubChem CID172287ChemSpider150582 YUNII85V47MCE4ZChEMBLChEMBL2104006 NCompTox Dashboard (EPA)DTXSID00233078 Chemical and physical dataFormulaC18H19ClN2O3Molar mass346.81 g·mol−13D model (JSmol)Interactive image SMILES Clc1cccc(c1)COc3ccc...
Character group from J. R. R. Tolkien's legendarium Dark Riders and Black Riders redirect here. For other uses, see Dark Rider (disambiguation), Black Rider (disambiguation), and Nazgul (disambiguation). Fictional character NazgûlIn-universe informationAliasesThe NineÚlairi (in Quenya)Black RidersFell RidersRingwraithsBook(s)The Fellowship of the Ring (1954),The Two Towers (1954),The Return of the King (1955),The Silmarillion (1977),Unfinished Tales (1980) The Nazgûl (from Black Speech naz...
On-air comedian This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains wording that promotes the subject in a subjective manner without imparting real information. Please remove or replace such wording and instead of making proclamations about a subject's importance, use facts and attribution to demonstrate that importance. (March 2019) (Learn how and when to remove this te...
American politician (1820–1871) Ezra WheelerMember of the U.S. House of Representativesfrom Wisconsin's 5th districtIn officeMarch 4, 1863 – March 3, 1865Preceded byDistrict createdSucceeded byPhiletus SawyerMember of the Wisconsin State AssemblyIn office1853 Personal detailsBorn(1820-12-23)December 23, 1820Chenango County, New York, U.S.DiedSeptember 19, 1871(1871-09-19) (aged 50)Pueblo, Colorado, U.S.Resting placeOakwood Cemetery, Berlin, Wisconsin, U.S.Politic...
American baseball player Baseball player Tyler SturdevantSturdevant with the Tampa Bay RaysPitcherBorn: (1985-12-20) December 20, 1985 (age 37)Littleton, Colorado, U.S.Batted: RightThrew: RightMLB debutMay 24, 2016, for the Tampa Bay RaysLast MLB appearanceAugust 25, 2016, for the Tampa Bay RaysMLB statistics (through 2016 season)Win–loss record0-1Earned run average3.93Strikeouts14 Teams Tampa Bay Rays (2016) Tyler James Sturdevant (born December 20, 1985)...
Untuk bekas partai politik pimpinan Alex Goldfarb, lihat Atid (partai politik). Yesh Atid יש עתידKetua umumYair LapidDibentukJanuary 2012 (January 2012)IdeologiLiberalisme[1]Sekulerisme[2]Liberalisme ekonomi[3][4]Zionisme Liberal[5] Solusi dua negara[6][7]Posisi politikTengah[3]Afiliasi nasionalBiru & Putih (2019–)Afiliasi internasionalTidak adaKnesset17 / 120Anggota Knesset terbanyak19 (2013)Lambang pemilu...
1999 child murder in Rogers, Arkansas Jesse DirkhisingDirkhisingBornJesse William Dirkhising(1986-05-24)May 24, 1986Oxford, Ohio, U.S.DiedSeptember 26, 1999(1999-09-26) (aged 13)[1]Rogers, Arkansas, U.S.Cause of deathDrugging and positional asphyxia[2]Resting placeFriendship Cemetery, Springdale, Arkansas, United States[3]ParentsMiles Yates Jr. (father)Tina Yates (mother) Jesse William Dirkhising (May 24, 1986 – September 26, 1999), also known as Jesse Yate...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Mei 2016. The Hungover GamesBerkas:The Hungover Games.jpgSutradara Josh Stolberg Produser Jim Busfield Ben Feingold Jamie Kennedy Ditulis oleh Kyle Barnett Anderson SkenarioKyle Barnett AndersonCeritaDavid BernsteinPemeranRoss NathanSam PancakeBen BegleyHerbert Russ...
Ganda Station感田駅Ganda Station platformGeneral informationLocationGanda, Nōgata, FukuokaJapanOperated byChikuhō Electric RailroadLine(s) Chikuhō Electric Railroad Line Platforms2 side platformOther informationStation codeCK 20HistoryOpened1959Passengers2013372 daily Ganda Station (感田駅, Ganda-eki) is a railway station located in Nōgata, Fukuoka. Lines Chikuhō Electric Railroad Chikuhō Electric Railroad Line Platforms 1 ■ Chikuhō Electric Railroad Line for Chikuh...
Book of Isaiah, chapter 28 Isaiah 28← chapter 27chapter 29 →The Great Isaiah Scroll, the best preserved of the biblical scrolls found at Qumran from the second century BC, contains all the verses in this chapter.BookBook of IsaiahHebrew Bible partNevi'imOrder in the Hebrew part5CategoryLatter ProphetsChristian Bible partOld TestamentOrder in the Christian part23 Isaiah 28 is the twenty-eighth chapter of the Book of Isaiah in the Hebrew Bible or the Old Testament of the Christian...
Distrik Balasore BaleswarDistrikSearah jarum jam dari sebelah kiri atas: Kuil Enami Jagannath, Istana Nilagiri, Kuil Khirachora Gopinatha di Remuna, Pantai Chandipur, Sekolah Haji Nariruddin di BalasoreJulukan: Lumbungnya OdishaLokasi di OdishaKoordinat: 21°30′N 86°54′E / 21.5°N 86.9°E / 21.5; 86.9Koordinat: 21°30′N 86°54′E / 21.5°N 86.9°E / 21.5; 86.9Negara IndiaNegara Bagian OdishaMarkas besarBalasorePemerintahan ...