Lattice problem

In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices. The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic algorithms. In addition, some lattice problems which are worst-case hard can be used as a basis for extremely secure cryptographic schemes. The use of worst-case hardness in such schemes makes them among the very few schemes that are very likely secure even against quantum computers. For applications in such cryptosystems, lattices over vector spaces (often ) or free modules (often ) are generally considered.

For all the problems below, assume that we are given (in addition to other more specific inputs) a basis for the vector space V and a norm N. The norm usually considered is the Euclidean norm L2. However, other norms (such as Lp) are also considered and show up in a variety of results.[1]

Throughout this article, let denote the length of the shortest non-zero vector in the lattice L: that is,

Shortest vector problem (SVP)

This is an illustration of the shortest vector problem (basis vectors in blue, shortest vector in red).

In the SVP, a basis of a vector space V and a norm N (often L2) are given for a lattice L and one must find the shortest non-zero vector in V, as measured by N, in L. In other words, the algorithm should output a non-zero vector v such that .

In the γ-approximation version SVPγ, one must find a non-zero lattice vector of length at most for given .

Hardness results

The exact version of the problem is only known to be NP-hard for randomized reductions.[2][3] By contrast, the corresponding problem with respect to the uniform norm is known to be NP-hard.[4]

Algorithms for the Euclidean norm

To solve the exact version of the SVP under the Euclidean norm, several different approaches are known, which can be split into two classes: algorithms requiring superexponential time () and memory, and algorithms requiring both exponential time and space () in the lattice dimension. The former class of algorithms most notably includes lattice enumeration[5][6][7] and random sampling reduction,[8][9] while the latter includes lattice sieving,[10][11][12] computing the Voronoi cell of the lattice,[13][14] and discrete Gaussian sampling.[15] An open problem is whether algorithms for solving exact SVP exist running in single exponential time () and requiring memory scaling polynomially in the lattice dimension.[16]

To solve the γ-approximation version SVPγ for for the Euclidean norm, the best known approaches are based on using lattice basis reduction. For large , the Lenstra–Lenstra–Lovász (LLL) algorithm can find a solution in time polynomial in the lattice dimension. For smaller values , the Block Korkine-Zolotarev algorithm (BKZ)[17][18][19] is commonly used, where the input to the algorithm (the blocksize ) determines the time complexity and output quality: for large approximation factors , a small block size suffices, and the algorithm terminates quickly. For small , larger are needed to find sufficiently short lattice vectors, and the algorithm takes longer to find a solution. The BKZ algorithm internally uses an exact SVP algorithm as a subroutine (running in lattices of dimension at most ), and its overall complexity is closely related to the costs of these SVP calls in dimension .

GapSVP

The problem GapSVPβ consists of distinguishing between the instances of SVP in which the length of the shortest vector is at most or larger than , where can be a fixed function of the dimension of the lattice . Given a basis for the lattice, the algorithm must decide whether or . Like other promise problems, the algorithm is allowed to err on all other cases.

Yet another version of the problem is GapSVPζ,γ for some functions ζ and γ. The input to the algorithm is a basis and a number . It is assured that all the vectors in the Gram–Schmidt orthogonalization are of length at least 1, and that and that , where is the dimension. The algorithm must accept if , and reject if . For large (i.e. ), the problem is equivalent to GapSVPγ because[20] a preprocessing done using the LLL algorithm makes the second condition (and hence, ) redundant.

Closest vector problem (CVP)

This is an illustration of the closest vector problem (basis vectors in blue, external vector in green, closest vector in red).

In CVP, a basis of a vector space V and a metric M (often L2) are given for a lattice L, as well as a vector v in V but not necessarily in L. It is desired to find the vector in L closest to v (as measured by M). In the -approximation version CVPγ, one must find a lattice vector at distance at most .

Relationship with SVP

The closest vector problem is a generalization of the shortest vector problem. It is easy to show that given an oracle for CVPγ (defined below), one can solve SVPγ by making some queries to the oracle.[21] The naive method to find the shortest vector by calling the CVPγ oracle to find the closest vector to 0 does not work because 0 is itself a lattice vector and the algorithm could potentially output 0.

The reduction from SVPγ to CVPγ is as follows: Suppose that the input to the SVPγ is the basis for lattice . Consider the basis and let be the vector returned by CVPγ(Bi, bi). The claim is that the shortest vector in the set is the shortest vector in the given lattice.

Hardness results

Goldreich et al. showed that any hardness of SVP implies the same hardness for CVP.[22] Using PCP tools, Arora et al. showed that CVP is hard to approximate within factor unless .[23] Dinur et al. strengthened this by giving a NP-hardness result with for .[24]

Sphere decoding

Algorithms for CVP, especially the Fincke and Pohst variant,[6] have been used for data detection in multiple-input multiple-output (MIMO) wireless communication systems (for coded and uncoded signals).[25][13] In this context it is called sphere decoding due to the radius used internal to many CVP solutions.[26]

It has been applied in the field of the integer ambiguity resolution of carrier-phase GNSS (GPS).[27] It is called the LAMBDA method in that field. In the same field, the general CVP problem is referred to as Integer Least Squares.

GapCVP

This problem is similar to the GapSVP problem. For GapSVPβ, the input consists of a lattice basis and a vector , and the algorithm must answer whether one of the following holds:

  • there is a lattice vector such that the distance between it and is at most 1, and
  • every lattice vector is at a distance greater than away from .

The opposite condition is that the closest lattice vector is at a distance , hence the name GapCVP.

Known results

The problem is trivially contained in NP for any approximation factor.

Schnorr, in 1987, showed that deterministic polynomial time algorithms can solve the problem for .[28] Ajtai et al. showed that probabilistic algorithms can achieve a slightly better approximation factor of .[10]

In 1993, Banaszczyk showed that GapCVPn is in .[29] In 2000, Goldreich and Goldwasser showed that puts the problem in both NP and coAM.[30] In 2005, Aharonov and Regev showed that for some constant , the problem with is in .[31]

For lower bounds, Dinur et al. showed in 1998 that the problem is NP-hard for .[32]

Shortest independent vectors problem (SIVP)

Given a lattice L of dimension n, the algorithm must output n linearly independent so that , where the right-hand side considers all bases of the lattice.

In the -approximate version, given a lattice L with dimension n, one must find n linearly independent vectors of length , where is the th successive minimum of .

Bounded distance decoding

This problem is similar to CVP. Given a vector such that its distance from the lattice is at most , the algorithm must output the closest lattice vector to it.

Covering radius problem

Given a basis for the lattice, the algorithm must find the largest distance (or in some versions, its approximation) from any vector to the lattice.

Shortest basis problem

Many problems become easier if the input basis consists of short vectors. An algorithm that solves the Shortest Basis Problem (SBP) must, given a lattice basis , output an equivalent basis such that the length of the longest vector in is as short as possible.

The approximation version SBPγ problem consist of finding a basis whose longest vector is at most times longer than the longest vector in the shortest basis.

Use in cryptography

Average-case hardness of problems forms a basis for proofs-of-security for most cryptographic schemes. However, experimental evidence suggests that most NP-hard problems lack this property: they are probably only worst case hard. Many lattice problems have been conjectured or proven to be average-case hard, making them an attractive class of problems to base cryptographic schemes on. Moreover, worst-case hardness of some lattice problems have been used to create secure cryptographic schemes. The use of worst-case hardness in such schemes makes them among the very few schemes that are very likely secure even against quantum computers.

The above lattice problems are easy to solve if the algorithm is provided with a "good" basis. Lattice reduction algorithms aim, given a basis for a lattice, to output a new basis consisting of relatively short, nearly orthogonal vectors. The Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) was an early efficient algorithm for this problem which could output an almost reduced lattice basis in polynomial time.[33] This algorithm and its further refinements were used to break several cryptographic schemes, establishing its status as a very important tool in cryptanalysis. The success of LLL on experimental data led to a belief that lattice reduction might be an easy problem in practice; however, this belief was challenged in the late 1990s, when several new results on the hardness of lattice problems were obtained, starting with the result of Ajtai.[2]

In his seminal papers, Ajtai showed that the SVP problem was NP-hard and discovered some connections between the worst-case complexity and average-case complexity of some lattice problems.[2][3] Building on these results, Ajtai and Dwork created a public-key cryptosystem whose security could be proven using only the worst case hardness of a certain version of SVP,[34] thus making it the first result to have used worst-case hardness to create secure systems.[35]

See also

References

  1. ^ Khot, Subhash (2005). "Hardness of approximating the shortest vector problem in lattices". J. ACM. 52 (5): 789–808. doi:10.1145/1089023.1089027. S2CID 13438130.
  2. ^ a b c Ajtai, M. (1996). "Generating hard instances of lattice problems". Proceedings of the Twenty-Eighth annual ACM symposium on Theory of computing. Philadelphia, Pennsylvania, United States: ACM. pp. 99–108. doi:10.1145/237814.237838. ISBN 978-0-89791-785-8. S2CID 6864824.
  3. ^ a b Ajtai, Miklós (1998). "The shortest vector problem in L2 is NP-hard for randomized reductions". Proceedings of the thirtieth annual ACM symposium on Theory of computing. Dallas, Texas, United States: ACM. pp. 10–19. doi:10.1145/276698.276705. ISBN 978-0-89791-962-3. S2CID 4503998.
  4. ^ van Emde Boas, Peter (1981). "Another NP-complete problem and the complexity of computing short vectors in a lattice". Technical Report 8104. University of Amsterdam, Department of Mathematics, Netherlands.
  5. ^ Kannan, Ravi (1983). "Improved algorithms for integer programming and related lattice problems". Proceedings of the fifteenth annual ACM symposium on Theory of computing - STOC '83. New York, NY, USA: ACM. pp. 193–206. doi:10.1145/800061.808749. ISBN 978-0-89791-099-6. S2CID 18181112.
  6. ^ a b Fincke, U.; Pohst, M. (1985). "Improved Methods for Calculating Vectors of Short Length in a Lattice, Including a Complexity Analysis". Math. Comp. 44 (170): 463–471. doi:10.1090/S0025-5718-1985-0777278-8.
  7. ^ Gama, Nicolas; Nguyen, Phong Q.; Regev, Oded (2010-05-30). "Lattice Enumeration Using Extreme Pruning". Advances in Cryptology – EUROCRYPT 2010. Lecture Notes in Computer Science. Vol. 6110. Springer, Berlin, Heidelberg. pp. 257–278. doi:10.1007/978-3-642-13190-5_13. ISBN 978-3-642-13189-9. S2CID 1938519.
  8. ^ Schnorr, Claus Peter (2003-02-27). "Lattice Reduction by Random Sampling and Birthday Methods". Stacs 2003. Lecture Notes in Computer Science. Vol. 2607. Springer, Berlin, Heidelberg. pp. 145–156. CiteSeerX 10.1.1.137.4293. doi:10.1007/3-540-36494-3_14. ISBN 978-3-540-36494-8.
  9. ^ Aono, Yoshinori; Nguyen, Phong Q. (2017-04-30). "Random Sampling Revisited: Lattice Enumeration with Discrete Pruning". Advances in Cryptology – EUROCRYPT 2017 (PDF). Lecture Notes in Computer Science. Vol. 10211. Springer, Cham. pp. 65–102. doi:10.1007/978-3-319-56614-6_3. ISBN 978-3-319-56613-9. S2CID 39082279.
  10. ^ a b Ajtai, Miklós; Kumar, Ravi; Sivakumar, D. (2001). "A sieve algorithm for the shortest lattice vector problem". Proceedings of the thirty-third annual ACM symposium on Theory of computing. Hersonissos, Greece: ACM. pp. 601–610. doi:10.1145/380752.380857. ISBN 1-58113-349-9. S2CID 14982298.
  11. ^ Micciancio, Daniele; Voulgaris, Panagiotis (2010). "Faster Exponential Time Algorithms for the Shortest Vector Problem". Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms. SODA '10. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics. pp. 1468–1480. doi:10.1137/1.9781611973075.119. ISBN 978-0-89871-698-6. S2CID 90084.
  12. ^ Becker, A.; Ducas, L.; Gama, N.; Laarhoven, T. (2015-12-21). "New directions in nearest neighbor searching with applications to lattice sieving". Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics. pp. 10–24. doi:10.1137/1.9781611974331.ch2. ISBN 978-1-61197-433-1.
  13. ^ a b Agrell, E.; Eriksson, T.; Vardy, A.; Zeger, K. (2002). "Closest Point Search in Lattices" (PDF). IEEE Trans. Inf. Theory. 48 (8): 2201–2214. doi:10.1109/TIT.2002.800499.
  14. ^ Micciancio, Daniele; Voulgaris, Panagiotis (2010). "A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations". Proceedings of the forty-second ACM symposium on Theory of computing. STOC '10. New York, NY, USA: ACM. pp. 351–358. CiteSeerX 10.1.1.705.3304. doi:10.1145/1806689.1806739. ISBN 978-1-4503-0050-6. S2CID 2449948.
  15. ^ Aggarwal, Divesh; Dadush, Daniel; Regev, Oded; Stephens-Davidowitz, Noah (2015). "Solving the Shortest Vector Problem in 2 n Time Using Discrete Gaussian Sampling". Proceedings of the forty-seventh annual ACM symposium on Theory of Computing. STOC '15. New York, NY, USA: ACM. pp. 733–742. doi:10.1145/2746539.2746606. ISBN 978-1-4503-3536-2. S2CID 10214330.
  16. ^ Micciancio, Daniele (2017-07-01). "Lattice Cryptography – Shortest Vector Problem".
  17. ^ Schnorr, C. P. (1987-01-01). "A hierarchy of polynomial time lattice basis reduction algorithms". Theoretical Computer Science. 53 (2): 201–224. doi:10.1016/0304-3975(87)90064-8.
  18. ^ Schnorr, C. P.; Euchner, M. (1994-08-01). "Lattice basis reduction: Improved practical algorithms and solving subset sum problems" (PDF). Mathematical Programming. 66 (1–3): 181–199. doi:10.1007/bf01581144. ISSN 0025-5610. S2CID 15386054.
  19. ^ Chen, Yuanmi; Nguyen, Phong Q. (2011-12-04). "BKZ 2.0: Better Lattice Security Estimates". Advances in Cryptology – ASIACRYPT 2011. Lecture Notes in Computer Science. Vol. 7073. Springer, Berlin, Heidelberg. pp. 1–20. doi:10.1007/978-3-642-25385-0_1. ISBN 978-3-642-25384-3.
  20. ^ Peikert, Chris (2009). "Public-key cryptosystems from the worst-case shortest vector problem: extended abstract". Proceedings of the 41st annual ACM symposium on Theory of Computing. Bethesda, MD, USA: ACM. pp. 333–342. doi:10.1145/1536414.1536461. ISBN 978-1-60558-506-2. S2CID 1864880.
  21. ^ Micciancio, Daniele; Goldwasser, Shafi (2002). Complexity of Lattice Problems. Springer.
  22. ^ Goldreich, O.; et al. (1999). "Approximating shortest lattice vectors is not harder than approximating closest lattice vectors". Inf. Process. Lett. 71 (2): 55–61. doi:10.1016/S0020-0190(99)00083-6.
  23. ^ Arora, Sanjeev; et al. (1993). "Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science". J. Comput. Syst. Sci. Vol. 54. pp. 317–331. doi:10.1109/SFCS.1993.366815. ISBN 978-0-8186-4370-5. S2CID 44988406.
  24. ^ Dinur, I.; et al. (2003). "Approximating CVP to Within Almost-Polynomial Factors is NP-Hard". Combinatorica. 23 (2): 205–243. doi:10.1007/s00493-003-0019-y. S2CID 45754954.
  25. ^ Biglieri, E.; Calderbank, R.; Constantinides, Anthony G.; Goldsmith, A.; Paulraj, A.; Poor, H. V. (2007). MIMO Wireless Communications. Cambridge: Cambridge U. P.
  26. ^ Wang, Ping; Le-Ngoc, Tho (2011). "A List Sphere Decoding Algorithm with Improved Radius Setting Strategies". Wireless Personal Communications. 61 (1): 189–200. doi:10.1007/s11277-010-0018-4. S2CID 30919872.
  27. ^ Hassibi, A.; Boyd, S. (1998). "Integer Parameter Estimation in Linear Models with Applications to GPS". IEEE Trans. Sig. Proc. 46 (11): 2938–2952. Bibcode:1998ITSP...46.2938H. CiteSeerX 10.1.1.114.7246. doi:10.1109/78.726808.
  28. ^ Schnorr, C. P. "Factoring integers and computing discrete logarithms via diophantine approximation". Advances in Cryptology – Proceedings of Eurocrypt '91.
  29. ^ Banaszczyk, W. (1993). "New bounds in some transference theorems in the geometry of numbers". Math. Ann. 296 (1): 625–635. doi:10.1007/BF01445125. S2CID 13921988.
  30. ^ Goldreich, Oded; Goldwasser, Shafi (1998). "On the limits of non-approximability of lattice problems". Proceedings of the thirtieth annual ACM symposium on Theory of computing. Dallas, Texas, United States: ACM. pp. 1–9. doi:10.1145/276698.276704. ISBN 0-89791-962-9. S2CID 3051993.
  31. ^ Aharonov, Dorit; Oded Regev (2005). "Lattice problems in NP coNP". J. ACM. 52 (5): 749–765. CiteSeerX 10.1.1.205.3730. doi:10.1145/1089023.1089025. S2CID 1669286.
  32. ^ Dinur, I.; Kindler, G.; Safra, S. (1998). "Approximating-CVP to within Almost-Polynomial Factors is NP-Hard". Proceedings of the 39th Annual Symposium on Foundations of Computer Science. IEEE Computer Society. p. 99. ISBN 978-0-8186-9172-0.
  33. ^ Lenstra, A. K.; Lenstra, H. W. Jr.; Lovász, L. (1982). "Factoring polynomials with rational coefficients" (PDF). Math. Ann. 261 (4): 515–534. doi:10.1007/BF01457454. S2CID 5701340. Archived from the original (PDF) on 2011-07-17.
  34. ^ Ajtai, Miklós; Dwork, Cynthia (1997). "A public-key cryptosystem with worst-case/average-case equivalence". Proceedings of the Twenty-Ninth annual ACM symposium on Theory of computing. El Paso, Texas, United States: ACM. pp. 284–293. doi:10.1145/258533.258604. ISBN 0-89791-888-6. S2CID 9918417.
  35. ^ Cai, Jin-Yi (2000). "The Complexity of Some Lattice Problems". Algorithmic Number Theory. Lecture Notes in Computer Science. Vol. 1838. pp. 1–32. doi:10.1007/10722028_1. ISBN 978-3-540-67695-9.

Further reading

Read other articles:

American politician Timothy Crane DayMember of the U.S. House of Representativesfrom Ohio's first districtIn officeMarch 4, 1855 – March 3, 1857Preceded byDavid T. DisneySucceeded byGeorge H. Pendleton Personal detailsBorn(1819-01-08)January 8, 1819Cincinnati, Ohio, USDiedApril 15, 1869(1869-04-15) (aged 50)Cincinnati, Ohio, USResting placeSpring Grove CemeteryPolitical partyOpposition Timothy Crane Day (January 8, 1819 – April 15, 1869) was a U.S. Representative...

 

 

This is Pugetbill's talk page, where you can send them messages and comments. Put new text under old text. Click here to start a new topic. New to Wikipedia? Welcome! Learn to edit; get help. Assume good faith Be polite and avoid personal attacks Be welcoming to newcomers Seek dispute resolution if needed Archives: 1, 2 Archives 1, 2 Disambiguation link notification for September 10 Hi. Thank you for your recent edits. Wikipedia appreciates your help. We noticed though that when you edited Po...

 

 

Untuk kegunaan lain, lihat Chernyakhovsky (disambiguasi). Jenderal Angkatan Darat Ivan Chernyakhovsky Ivan Danilovich Chernyakhovsky, juga Cherniakhovsky, (bahasa Rusia: Ива́н Дани́лович Черняхо́вский; Oksanyna, Uman, Kegubernuran Kiev, Kekaisaran Rusia (sekarang Oblast Cherkasy, Ukraina)), (29 Juni [K.J.: 16 Juni] 1906 – Mehlsack, sekarang Pieniężno, Polandia, 18 Februari 1945) adalah jenderal besar Uni Soviet termuda, dua kali meraih gelar Pahlawan Uni So...

  Metrosideros fulgens Metrosideros fulgens produce flores rojas brillantes en inviernoTaxonomíaReino: PlantaeDivisión: MagnoliophytaClase: MagnoliopsidaSubclase: RosidaeOrden: MyrtalesFamilia: MyrtaceaeSubfamilia: MyrtoideaeTribu: MetrosidereaeGénero: MetrosiderosEspecie: M. fulgensSol. ex Gaertn.Sinonimia Metrosideros scandensJ.R.Forst. & G.Forst. [editar datos en Wikidata] Metrosideros fulgens ( la trepadora rata escarlata) es una liana del bosque o enredadera endémi...

 

 

QuakeKotak permainan QuakeInformasi produksiPengembangid SoftwarePenerbitGT InteractivePengarahJohn Romero PerancangJohn Romero, John CarmackPemrogramJohn Carmack KomponisAubrey HodgesTrent Reznor  Data permainanSeriQuake MesinKostumPlatformAmiga, Falcon, IRIX, Macintosh, PC (DOS, Linux, Windows), N64, Risc PC, Saturn, Solaris, Windows Mobile, Zeebo, port sumber untuk platform lainGenrePermainan tembak-menembak orang-pertamaModePemain tunggal, multi-pemain PerilisanTanggal...

 

 

To remain in a place without an apparent purpose Loiter redirects here. For the phase of flight, see Loiter (aeronautics). Not to be confused with littering. No Loitering sign in Fortuna, California Loitering is the act of standing or waiting around idly without purpose in some public places.[1] While the laws regarding loitering have been challenged and changed over time, loitering of suspect people can be illegal in some jurisdictions and some specific circumstances. Prohibition and...

Tamara MiansarovaТамара МиансароваBornTamara Grigoryevna Miansarova(1931-03-05)5 March 1931Zinovievsk, Ukrainian SSRDied12 July 2017(2017-07-12) (aged 86)Moscow, RussiaAlma materMoscow ConservatoryAwardsSopot International Song Festival (Winner, 1963)Musical careerOriginMoscow, Soviet UnionGenresPopOccupation(s)Singer Musical artist Tamara Grigoryevna Miansarova (née Remnyova, Russian: Тамара Григорьевна Миансарова; 5 March 1931 – 12 Jul...

 

 

American fantasy and science fiction author (1929–2018) Ursula K. Le GuinLe Guin in 1995BornUrsula Kroeber(1929-10-21)October 21, 1929Berkeley, California, U.S.DiedJanuary 22, 2018(2018-01-22) (aged 88)Portland, Oregon, U.S.OccupationAuthorEducationRadcliffe College (BA)Columbia University (MA)Periodc. 1959–2018GenreScience fictionfantasyrealistic fictionliterary criticismpoetryessayNotable worksEarthsea (1964–2018)The Left Hand of Darkness (1969)The Dispossessed (1974)Spouse...

 

 

This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this template message) NSB Di 8CargoNet Di 8.704 at Nässjö Central Station, SwedenType and originPowe...

Карта мира 1886 года с отмеченными (розовым цветом) владениями Великобритании Pax Britannica ([Пакс Брита́ника] с лат. — «Британский мир» по аналогии с лат. Pax Romana) — период доминирования Британской империи на море и в международных отношениях начиная с битвы при Ватерлоо 1815 год...

 

 

Peter Andry (standing) with, l. to r., Mstislav Rostropovich, Sviatoslav Richter, Herbert von Karajan, and David Oistrakh Peter Edward Andry, OBE, OAM (10 March 1927 – 7 December 2010) was a classical record producer and an influential executive in the recording industry, active from the 1950s to the 1990s. Born in Hamburg, Andry spent his formative years in Melbourne, Australia, where he became a professional flautist, with ambitions to be a conductor. After moving to England, wher...

 

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) You can help expand this article with text translated from the corresponding article in German. (June 2023) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translatio...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Penrice Castle – news · newspapers · books · scholar · JSTOR (January 2020) The 18th-century mansion (left) and the remains of the castle (right) Penrice Castle (Welsh: Castell Pen-rhys) is a 13th-century castle near Penrice, Swansea on the Gower Peni...

 

 

Kapel van Onze Lieve Vrouw van de heilige Rozenkrans Onze Lieve Vrouwekapel Plaats Leiden Denominatie Traditioneel Rooms-katholiek Gewijd aan Onze Lieve Vrouw van de Rozenkrans Coördinaten 52° 10′ NB, 4° 31′ OL Gebouwd in 1961 Restauratie(s) 2000 en 2011 Architectuur Architect(en) Pieter van der Sterre Bouwmateriaal Baksteen Stijlperiode Neoclassicistisch Interieur Doopvont Graniet Altaar Marmer Orgel Verschueren Zitplaatsen 160 Portaal    Christendom Triden...

 

 

У этого термина существуют и другие значения, см. Дон Кихот (значения). Хитроумный идальго Дон Кихот Ламанчскийисп. El ingenioso hidalgo Don Quijote de la Mancha Жанр роман Автор Мигель де Сервантес Язык оригинала испанский Дата написания 1605, 1615 Дата первой публикации 1605 (I том), 1615 (II том) Из...

コディ・ゼラーCody Zeller 2019年のゼラーニューオーリンズ・ペリカンズポジション C / PF所属リーグ NBA基本情報愛称 Big Handsome国籍 アメリカ合衆国生年月日 (1992-10-05) 1992年10月5日(31歳)出身地 インディアナ州ワシントン(英語版)身長 211cm (6 ft 11 in)体重 109kg (240 lb)ウィングスパン 216cm  (7 ft 1 in)シューズ エア・ジョーダン[1]キ...

 

 

Combat assault in the American airborne landings in Normandy (WWII) vteOperation Overlord(Battle of Normandy)Prelude Atlantic Wall Bodyguard Fortitude Zeppelin Titanic Taxable, Glimmer & Big Drum Combined Bomber Offensive Pointblank Transport Plan Postage Able Tarbrush Tiger Fabius Airborne assaultBritish Sector Tonga Caen canal and Orne river bridges Merville Battery Mallard American Sector Albany Boston Chicago Detroit Elmira Normandy landingsAmerican Sector Omaha Utah Pointe du Hoc Ang...

 

 

Guayabal Barrio GuayabalUbicación en el municipio de Juana Díaz en Puerto Rico Ubicación de Puerto Rico en El CaribeCoordenadas 18°04′44″N 66°29′05″O / 18.0789, -66.4847Entidad Barrio • País  Estados Unidos • Estado libre asociado  Puerto Rico • Municipio Juana DíazSuperficie   • Total 15.71 km² • Tierra 15.25 km² • Agua (2.92%) 0.46 km²Altitud   • Media 168 m s. n. m.Población (2010) ...

Kerajaan IsraelKerajaan Utara931 SM–723 SMPeta kerajaan Israel (biru) dan kerajaan-kerajaan di sekitarnya pada abad 9 SMStatusKerajaanIbu kotaSamariaPemerintahanMonarkiRaja • Lihat teks Lihat teks Era SejarahZaman Besi• Raja Yerobeam 931 SM• Raja Hosea 723 SM Didahului oleh Digantikan oleh krjKerajaan Israel (kerajaan bersatu) ksrKekaisaran Asiria Baru Sunting kotak info • Lihat • BicaraBantuan penggunaan templat ini Kerajaan Israel (bahasa Ibrani: מ...

 

 

QUICPay(クイックペイ)は、ジェーシービー(JCB)及びJCBの提携先が展開する決済(電子決済)サービスである。「Quick & Useful IC Payment」の略。 概要 ソニーが開発したFeliCaを採用した電子決済(非接触決済)サービスである。「Pay」(ペイ)という名称ではあるが、QRコード決済やネット決済に「○○Pay」(○○ペイ)という名称が使われる前からあるため、これらの決...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!