Lagrange inversion theorem

In mathematical analysis, the Lagrange inversion theorem, also known as the Lagrange–Bürmann formula, gives the Taylor series expansion of the inverse function of an analytic function. Lagrange inversion is a special case of the inverse function theorem.

Statement

Suppose z is defined as a function of w by an equation of the form

where f is analytic at a point a and Then it is possible to invert or solve the equation for w, expressing it in the form given by a power series[1]

where

The theorem further states that this series has a non-zero radius of convergence, i.e., represents an analytic function of z in a neighbourhood of This is also called reversion of series.

If the assertions about analyticity are omitted, the formula is also valid for formal power series and can be generalized in various ways: It can be formulated for functions of several variables; it can be extended to provide a ready formula for F(g(z)) for any analytic function F; and it can be generalized to the case where the inverse g is a multivalued function.

The theorem was proved by Lagrange[2] and generalized by Hans Heinrich Bürmann,[3][4][5] both in the late 18th century. There is a straightforward derivation using complex analysis and contour integration;[6] the complex formal power series version is a consequence of knowing the formula for polynomials, so the theory of analytic functions may be applied. Actually, the machinery from analytic function theory enters only in a formal way in this proof, in that what is really needed is some property of the formal residue, and a more direct formal proof is available. In fact, the Lagrange inversion theorem has a number of additional rather different proofs, including ones using tree-counting arguments or induction.[7][8][9]


If f is a formal power series, then the above formula does not give the coefficients of the compositional inverse series g directly in terms for the coefficients of the series f. If one can express the functions f and g in formal power series as

with f0 = 0 and f1 ≠ 0, then an explicit form of inverse coefficients can be given in term of Bell polynomials:[10]

where

is the rising factorial.

When f1 = 1, the last formula can be interpreted in terms of the faces of associahedra [11]

where for each face of the associahedron

Example

For instance, the algebraic equation of degree p

can be solved for x by means of the Lagrange inversion formula for the function f(x) = xxp, resulting in a formal series solution

By convergence tests, this series is in fact convergent for which is also the largest disk in which a local inverse to f can be defined.

Applications

Lagrange–Bürmann formula

There is a special case of Lagrange inversion theorem that is used in combinatorics and applies when for some analytic with Take to obtain Then for the inverse (satisfying ), we have

which can be written alternatively as

where is an operator which extracts the coefficient of in the Taylor series of a function of w.

A generalization of the formula is known as the Lagrange–Bürmann formula:

where H is an arbitrary analytic function.

Sometimes, the derivative H(w) can be quite complicated. A simpler version of the formula replaces H(w) with H(w)(1 − φ(w)/φ(w)) to get

which involves φ(w) instead of H(w).

Lambert W function

The Lambert W function is the function that is implicitly defined by the equation

We may use the theorem to compute the Taylor series of at We take and Recognizing that

this gives

The radius of convergence of this series is (giving the principal branch of the Lambert function).

A series that converges for (approximately ) can also be derived by series inversion. The function satisfies the equation

Then can be expanded into a power series and inverted.[12] This gives a series for

can be computed by substituting for z in the above series. For example, substituting −1 for z gives the value of

Binary trees

Consider[13] the set of unlabelled binary trees. An element of is either a leaf of size zero, or a root node with two subtrees. Denote by the number of binary trees on nodes.

Removing the root splits a binary tree into two trees of smaller size. This yields the functional equation on the generating function

Letting , one has thus Applying the theorem with yields

This shows that is the nth Catalan number.

Asymptotic approximation of integrals

In the Laplace–Erdelyi theorem that gives the asymptotic approximation for Laplace-type integrals, the function inversion is taken as a crucial step.

See also

References

  1. ^ M. Abramowitz; I. A. Stegun, eds. (1972). "3.6.6. Lagrange's Expansion". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover. p. 14.
  2. ^ Lagrange, Joseph-Louis (1770). "Nouvelle méthode pour résoudre les équations littérales par le moyen des séries". Histoire de l'Académie Royale des Sciences et Belles-Lettres de Berlin: 251–326. https://archive.org/details/uvresdelagrange18natigoog/page/n13 (Note: Although Lagrange submitted this article in 1768, it was not published until 1770.)
  3. ^ Bürmann, Hans Heinrich, "Essai de calcul fonctionnaire aux constantes ad-libitum," submitted in 1796 to the Institut National de France. For a summary of this article, see: Hindenburg, Carl Friedrich, ed. (1798). "Versuch einer vereinfachten Analysis; ein Auszug eines Auszuges von Herrn Bürmann" [Attempt at a simplified analysis; an extract of an abridgement by Mr. Bürmann]. Archiv der reinen und angewandten Mathematik [Archive of pure and applied mathematics]. Vol. 2. Leipzig, Germany: Schäferischen Buchhandlung. pp. 495–499.
  4. ^ Bürmann, Hans Heinrich, "Formules du développement, de retour et d'integration," submitted to the Institut National de France. Bürmann's manuscript survives in the archives of the École Nationale des Ponts et Chaussées [National School of Bridges and Roads] in Paris. (See ms. 1715.)
  5. ^ A report on Bürmann's theorem by Joseph-Louis Lagrange and Adrien-Marie Legendre appears in: "Rapport sur deux mémoires d'analyse du professeur Burmann," Mémoires de l'Institut National des Sciences et Arts: Sciences Mathématiques et Physiques, vol. 2, pages 13–17 (1799).
  6. ^ E. T. Whittaker and G. N. Watson. A Course of Modern Analysis. Cambridge University Press; 4th edition (January 2, 1927), pp. 129–130
  7. ^ Richard, Stanley (2012). Enumerative combinatorics. Volume 1. Cambridge Stud. Adv. Math. Vol. 49. Cambridge: Cambridge University Press. ISBN 978-1-107-60262-5. MR 2868112.
  8. ^ Ira, Gessel (2016), "Lagrange inversion", Journal of Combinatorial Theory, Series A, 144: 212–249, arXiv:1609.05988, doi:10.1016/j.jcta.2016.06.018, MR 3534068
  9. ^ Surya, Erlang; Warnke, Lutz (2023), "Lagrange Inversion Formula by Induction", The American Mathematical Monthly, 130 (10): 944–948, arXiv:2305.17576, doi:10.1080/00029890.2023.2251344, MR 4669236
  10. ^ Eqn (11.43), p. 437, C.A. Charalambides, Enumerative Combinatorics, Chapman & Hall / CRC, 2002
  11. ^ Aguiar, Marcelo; Ardila, Federico (2017). "Hopf monoids and generalized permutahedra". arXiv:1709.07504 [math.CO].
  12. ^ Corless, Robert M.; Jeffrey, David J.; Knuth, Donald E. (July 1997). "A sequence of series for the Lambert W function". Proceedings of the 1997 international symposium on Symbolic and algebraic computation. pp. 197–204. doi:10.1145/258726.258783.
  13. ^ Harris, John; Hirst, Jeffry L.; Mossinghoff, Michael (2008). Combinatorics and Graph Theory. Springer. pp. 185–189. ISBN 978-0387797113.

Read other articles:

Rei Salomão e filha do Faraó A filha do Faraó é uma figura na Bíblia Hebraica descrita como tendo se casado com Salomão para cimentar uma aliança política entre o Reino de Israel e Egito. Narrativa bíblica Embora não haja evidências arqueológicas de um casamento entre uma princesa egípcia, filha de um Faraó, e um rei de Israel, afirmações sobre um casamento são feitas em vários lugares na Bíblia Hebraica. Uma aliança matrimonial 1 Reis 3:1 diz: E Salomão se aliou a Faraó...

 

Koordinat: 6°50′46″S 108°48′07″E / 6.846243°S 108.801849°E / -6.846243; 108.801849 Stasiun Losari KG09 Stasiun LosariLokasi Jalan Raya Cirebon–TegalPanggangsari, Losari, Cirebon, Jawa Barat 45192IndonesiaKetinggian+3 mOperatorKereta Api IndonesiaDaerah Operasi III CirebonLetak dari pangkal km 188+793 lintas Semarang Poncol–Tegal–Cirebon (bangunan lama) km 189+201 (bangunan baru)[1] Jumlah peronSatu peron sisi dan dua peron pulau yang sama-sama...

 

Чеський СокілТип спортивна організація[d]Засновник Мірослав ТиршЇндржих ФюгнерdЗасновано 5 березня 1862ПрагаІдеологія панславізм Чеський Сокіл (чеськ. Česká obec sokolská, ČOS) — чеське спортивне товариство, засноване в ХІХ столітті в Чехії. Найстарша сокільська організація

Moeslim Kawi (4 Agustus 1935 – 1 Desember 2021) adalah wartawan senior Indonesia.[1] Ia berasal dari Nagari Koto Tangah Simalanggang, Kabupaten Lima Puluh Kota, Provinsi Sumatera Barat, dan menjalani masa kanak-kanak di kampung halamannya. Ia adalah seorang wartawan sepanjang hayat. Hampir tiga perempat usianya diabdikan untuk menjadi wartawan. Ia menempuh pendidikan dan menamatkan sekolah rakyat (SR), ia melanjutkan ke SMP di Kota Payakumbuh, seangkatan dengan politis...

 

American politician N. J. Holmberg Nathaniel John Holmberg (July 24, 1878 – June 13, 1951) was an American politician and farmer. Holmberg was born in a log cabin in Sacred Hear Township near Renville, Renville County, Minnesota and was educated in the Renville elementary public schools and the Renville High School. In 1909, Holmberg graduated from the University of Minnesota School of Agriculture. He lived in Renville, Minnesota with his wife and family and was a farmer. Holmberg serve...

 

American college football season 1950 Michigan Wolverines footballBig Ten championRose Bowl championRose Bowl, W 14–6 vs. CaliforniaConferenceBig Ten ConferenceRankingCoachesNo. 6APNo. 9Record6–3–1 (4–1–1 Big Ten)Head coachBennie Oosterbaan (3rd season)MVPDon Dufek Sr.CaptainRobert WahlHome stadiumMichigan StadiumSeasons← 19491951 → 1950 Big Ten Conference football standings vte Conf Overall Team W   L   T W   L   T No. 9...

2008 novel by Joan London The Good Parents First edition (AUS)AuthorJoan LondonCountryAustraliaLanguageEnglishGenreNovelPublisherVintage Books (AUS)Grove Press (US)Atlantic Books (UK)Publication dateApril 2008Media typePrint (paperback)ISBN1-74166-793-3OCLC213329704Preceded byGilgamesh Followed byThe Golden Age  The Good Parents is a 2008 novel by Joan London. The book concerns an eighteen-year-old girl, Maya de Jong, who moves to Melbourne and becomes involved in a r...

 

Mosque in Shkodër City, Shkodër County, Albania For other uses, see Lead Mosque (disambiguation). Xhamia E PlumbitFlooded area of the mosque.ReligionAffiliationIslamStatusPreservedLocationLocationShkodër, AlbaniaGeographic coordinates42°02′47″N 19°29′58″E / 42.0465°N 19.4995°E / 42.0465; 19.4995ArchitectureCompleted1773; 250 years ago (1773) South side of the mosque View from Rozafa Castle The Lead Mosque (Albanian: Xhamia e Plumbit), a...

 

Species of moth Scarce umber Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Lepidoptera Family: Geometridae Genus: Agriopis Species: A. aurantiaria Binomial name Agriopis aurantiaria(Hübner, 1799) Agriopis aurantiaria, the scarce umber, is a moth of the family Geometridae. It was first described by Jacob Hübner in 1799 and it is found throughout Europe from Spain through Central Europe to Russia. In the south it can be found from ...

TodananKecamatanNegara IndonesiaProvinsiJawa TengahKabupatenBloraPemerintahan • Camat-Populasi (2021)[1] • Total63.382 jiwaKode pos-Kode Kemendagri33.16.14 Kode BPS3316160 Luas- km²Desa/kelurahan- Todanan adalah sebuah kecamatan di Kabupaten Blora, Provinsi Jawa Tengah, Indonesia. Desa/kelurahan Pada tahun 2020, wilayah Kecamatan Todanan terbagi menjadi 25 desa/kelurahan berikut:[2] Bedingin Bicak Candi Cokrowati Dalangan Dringo Gondoriyo Gun...

 

American bishop, educator, and pioneer The Most ReverendPhilander Chase6th Presiding Bishop of the Episcopal ChurchChurchEpiscopal ChurchIn office1843–1852PredecessorAlexander Viets GriswoldSuccessorThomas Church BrownellOther post(s)Bishop of Illinois (1835-1852)OrdersOrdinationNovember 10, 1799by Samuel ProvoostConsecrationFebruary 11, 1819by William WhitePersonal detailsBornDecember 14, 1775Cornish, New Hampshire, United StatesDiedSeptember 20, 1852(1852-09-20) (aged 76)Br...

 

Primus discographyStudio albums9Live albums1Compilation albums2Video albums6Music videos20EPs5Singles22 This is a discography for the American rock band Primus. For individual songs, see the category listing. Albums Studio albums Year Album details Peak chart positions Certifications US[1] AUS[2] BEL(FL)[3] BEL(WA)[4] CAN[5] FIN[6] GER[7] NLD[8] NZ[9] SWI[10] UK[11] 1990 Frizzle Fry Released: February 7, 1...

Swiss footballer (born 2000) Filip Stojilković Stojilković in 2023Personal informationDate of birth (2000-01-04) 4 January 2000 (age 23)Place of birth Zollikon, SwitzerlandHeight 1.85 m (6 ft 1 in)Position(s) ForwardTeam informationCurrent team DarmstadtNumber 10Youth career2010–2014 Zürich2014 Red Star2014–2018 Zürich2018–2019 HoffenheimSenior career*Years Team Apps (Gls)2017–2018 Zürich II 9 (1)2018–2019 Hoffenheim II 2 (0)2019–2020 Wil 18 (8)2020 Sion I...

 

У этого термина существуют и другие значения, см. Просека (значения). Просека под будущую автодорогу Кинешма — Островское Граница Канады и США между провинцией Альберта и штатом Монтана — просека шириной в 6 метров Про́сека или про́сек — узкая полоса, прорубаема...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shocktrauma – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this template message) 1982 American TV series or program ShocktraumaR Adams Cowley and William ConradBased onShocktraumaby Jon Franklin and Alan Doel...

Panamaian-born cartoonist (born 1976) Jorge ChamCham in 2018BornJorge Gabriel ChamMay 1976 (age 47)Bocas Town, Bocas del Toro, PanamaAlma mater Georgia Institute of Technology (B.S.) Stanford University (PhD) Known forCartoon work - Piled Higher and DeeperPodcast - Daniel and Jorge Explain the UniverseScientific careerThesisOn performance and stability in open-loop running (2002)Doctoral advisorMark Cutkosky[1][2] Websitejorgecham.com A PhD Comics spec...

 

Game engine by Revolution Software Virtual TheatreDeveloper(s)Revolution SoftwarePlatformAmiga, Atari ST, PC (MS-DOS and Windows), PlayStation, Macintosh, LinuxTypeGame engineLicenseProprietaryWebsiterevolution.co.uk  The Virtual Theatre is a computer game engine designed by Revolution Software to produce adventure games for computer platforms. The engine allowed their team to script events, and move animated sprites against a drawn background with moving elements using a point-and-click...

 

2008–09 ISU SpeedSkating World CupEvents100 mmenwomen500 mmenwomen1000 mmenwomen1500 mmenwomen3k/5kwomen5k/10kmenTeam pursuitmenwomenvte The seventh competition weekend of the 2008–09 ISU Speed Skating World Cup was held in the Gunda Niemann-Stirnemann Halle in Erfurt, Germany, from Friday, 30 January, until Sunday, 1 February 2009. Schedule of events The schedule of the event is below[1] Date Time Events 30 January 14:30 CET 500 m women500 m men1500 m women5000 m men 31 January 1...

Gear bearing cutaway view A gear bearing is a type of rolling-element bearing similar to an epicyclic gear. Gear bearings consist of a number of smaller 'satellite' gears which revolve around the center of the bearing along a track on the outsides of the internal and satellite gears, and on the inside of the external gear. Each gear is in between two concentric rings. Therefore, the widths of the satellite gears must all be the same. Engagement Gear bearing Skew teeth bearing gear Herringbone...

 

Mayor-President of CeutaFlag of CeutaIncumbentJuan Jesús Vivassince 7 February 2001StyleThe Most ExcellentNominatorAssembly of CeutaAppointerThe Monarchcountersigned by the Prime MinisterTerm lengthFour years; no limit.Inaugural holderBasilio Fernández LópezFormation19 June 1995 The Mayor-President of the Autonomous City of Ceuta (Spanish: Alcalde-Presidente de la Ciudad Autónoma de Ceuta) or simply the President of Ceuta, is the highest political position of the Autonomous City of C...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!