Inquiry

A question mark

An inquiry (also spelled as enquiry in British English)[a] is any process that has the aim of augmenting knowledge, resolving doubt, or solving a problem. A theory of inquiry is an account of the various types of inquiry and a treatment of the ways that each type of inquiry achieves its aim.

Inquiry theories

Deduction

When three terms are so related to one another that the last is wholly contained in the middle and the middle is wholly contained in or excluded from the first, the extremes must admit of perfect syllogism. By 'middle term' I mean that which both is contained in another and contains another in itself, and which is the middle by its position also; and by 'extremes' (a) that which is contained in another, and (b) that in which another is contained. For if A is predicated of all B, and B of all C, A must necessarily be predicated of all C. ... I call this kind of figure the First. (Aristotle, Prior Analytics, 1.4)

Induction

Inductive reasoning consists in establishing a relation between one extreme term and the middle term by means of the other extreme; for example, if B is the middle term of A and C, in proving by means of C that A applies to B; for this is how we effect inductions. (Aristotle, Prior Analytics, 2.23)

Abduction

The locus classicus for the study of abductive reasoning is found in Aristotle's Prior Analytics, Book 2, Chapt. 25. It begins this way:

We have Reduction (απαγωγη, abduction):

  1. When it is obvious that the first term applies to the middle, but that the middle applies to the last term is not obvious, yet is nevertheless more probable or not less probable than the conclusion;
  2. Or if there are not many intermediate terms between the last and the middle;

For in all such cases the effect is to bring us nearer to knowledge.

By way of explanation, Aristotle supplies two very instructive examples, one for each of the two varieties of abductive inference steps that he has just described in the abstract:

  1. For example, let A stand for "that which can be taught", B for "knowledge", and C for "morality". Then that knowledge can be taught is evident; but whether virtue is knowledge is not clear. Then if BC is not less probable or is more probable than AC, we have reduction; for we are nearer to knowledge for having introduced an additional term, whereas before we had no knowledge that AC is true.
  2. Or again we have reduction if there are not many intermediate terms between B and C; for in this case too we are brought nearer to knowledge. For example, suppose that D is "to square", E "rectilinear figure", and F "circle". Assuming that between E and F there is only one intermediate term — that the circle becomes equal to a rectilinear figure by means of lunules — we should approximate to knowledge. (Aristotle, "Prior Analytics", 2.25, with minor alterations)

Aristotle's latter variety of abductive reasoning, though it will take some explaining in the sequel, is well worth our contemplation, since it hints already at streams of inquiry that course well beyond the syllogistic source from which they spring, and into regions that Peirce will explore more broadly and deeply.

Inquiry in the pragmatic paradigm

In the pragmatic philosophies of Charles Sanders Peirce, William James, John Dewey, and others, inquiry is closely associated with the normative science of logic. In its inception, the pragmatic model or theory of inquiry was extracted by Peirce from its raw materials in classical logic, with a little bit of help from Kant, and refined in parallel with the early development of symbolic logic by Boole, De Morgan, and Peirce himself to address problems about the nature and conduct of scientific reasoning. Borrowing a brace of concepts from Aristotle, Peirce examined three fundamental modes of reasoning that play a role in inquiry, commonly known as abductive, deductive, and inductive inference.

In rough terms, abduction is what we use to generate a likely hypothesis or an initial diagnosis in response to a phenomenon of interest or a problem of concern, while deduction is used to clarify, to derive, and to explicate the relevant consequences of the selected hypothesis, and induction is used to test the sum of the predictions against the sum of the data. It needs to be observed that the classical and pragmatic treatments of the types of reasoning, dividing the generic territory of inference as they do into three special parts, arrive at a different characterization of the environs of reason than do those accounts that count only two.

These three processes typically operate in a cyclic fashion, systematically operating to reduce the uncertainties and the difficulties that initiated the inquiry in question, and in this way, to the extent that inquiry is successful, leading to an increase in knowledge or in skills.

In the pragmatic way of thinking everything has a purpose, and the purpose of each thing is the first thing we should try to note about it.[2] The purpose of inquiry is to reduce doubt and lead to a state of belief, which a person in that state will usually call knowledge or certainty. As they contribute to the end of inquiry, we should appreciate that the three kinds of inference describe a cycle that can be understood only as a whole, and none of the three makes complete sense in isolation from the others. For instance, the purpose of abduction is to generate guesses of a kind that deduction can explicate and that induction can evaluate. This places a mild but meaningful constraint on the production of hypotheses, since it is not just any wild guess at explanation that submits itself to reason and bows out when defeated in a match with reality. In a similar fashion, each of the other types of inference realizes its purpose only in accord with its proper role in the whole cycle of inquiry. No matter how much it may be necessary to study these processes in abstraction from each other, the integrity of inquiry places strong limitations on the effective modularity of its principal components.

In Logic: The Theory of Inquiry, John Dewey defined inquiry as "the controlled or directed transformation of an indeterminate situation into one that is so determinate in its constituent distinctions and relations as to convert the elements of the original situation into a unified whole".[3] Dewey and Peirce's conception of inquiry extended beyond a system of thinking and incorporated the social nature of inquiry. These ideas are summarize in the notion Community of inquiry.[4][5][6]

Art and science of inquiry

For our present purposes, the first feature to note in distinguishing the three principal modes of reasoning from each other is whether each of them is exact or approximate in character. In this light, deduction is the only one of the three types of reasoning that can be made exact, in essence, always deriving true conclusions from true premises, while abduction and induction are unavoidably approximate in their modes of operation, involving elements of fallible judgment in practice and inescapable error in their application.

The reason for this is that deduction, in the ideal limit, can be rendered a purely internal process of the reasoning agent, while the other two modes of reasoning essentially demand a constant interaction with the outside world, a source of phenomena and problems that will no doubt continue to exceed the capacities of any finite resource, human or machine, to master. Situated in this larger reality, approximations can be judged appropriate only in relation to their context of use and can be judged fitting only with regard to a purpose in view.

A parallel distinction that is often made in this connection is to call deduction a demonstrative form of inference, while abduction and induction are classed as non-demonstrative forms of reasoning. Strictly speaking, the latter two modes of reasoning are not properly called inferences at all. They are more like controlled associations of words or ideas that just happen to be successful often enough to be preserved as useful heuristic strategies in the repertoire of the agent. But non-demonstrative ways of thinking are inherently subject to error, and must be constantly checked out and corrected as needed in practice.

In classical terminology, forms of judgment that require attention to the context and the purpose of the judgment are said to involve an element of "art", in a sense that is judged to distinguish them from "science", and in their renderings as expressive judgments to implicate arbiters in styles of rhetoric, as contrasted with logic.

In a figurative sense, this means that only deductive logic can be reduced to an exact theoretical science, while the practice of any empirical science will always remain to some degree an art.

Limits to inquiry

C. S. Peirce argued that inquiry reaches a logical limit, or "approximate[s] indefinitely toward that limit", which he regarded as "truth".[7]

Jewish rabbinical writers used the text of Deuteronomy 4:32 in the Hebrew Bible, or ask now concerning the days that are past, which were before you, since the day that God created man on the earth, and ask from one end of heaven to the other, whether any great thing like this has happened, or anything like it has been heard,[8] to impose ethical limits on inquiry, forbidding inquiry into the work of creation in the presence of two people, reading the words "for ask now of the days past" to indicate that one may inquire, but not two. The Rabbis reasoned that the words "since the day that God created man upon the earth" in this verse taught that one must not inquire concerning the time before creation, but that the words "the days past that were before you" meant that one may inquire about the six days of creation. They further reasoned that the words "from the one end of heaven to the other" indicated that one must not inquire about what is beyond the universe, what is above and what is below, what is before and what is after.[9]

Zeroth order inquiry

Many aspects of inquiry can be recognized and usefully studied in very basic logical settings, even simpler than the level of syllogism, for example, in the realm of reasoning that is variously known as Boolean algebra, propositional calculus, sentential calculus, or zeroth-order logic. By way of approaching the learning curve on the gentlest availing slope, we may well begin at the level of zeroth-order inquiry, in effect, taking the syllogistic approach to inquiry only so far as the propositional or sentential aspects of the associated reasoning processes are concerned. One of the bonuses of doing this in the context of Peirce's logical work is that it provides us with doubly instructive exercises in the use of his logical graphs, taken at the level of his so-called "alpha graphs".

In the case of propositional calculus or sentential logic, deduction comes down to applications of the transitive law for conditional implications and the approximate forms of inference hang on the properties that derive from these. In describing the various types of inference the following employs a few old "terms of art" from classical logic that are still of use in treating these kinds of simple problems in reasoning.

Deduction takes a Case, the minor premise
and combines it with a Rule, the major premise
to arrive at a Fact, the demonstrative conclusion
Induction takes a Case of the form
and matches it with a Fact of the form
to infer a Rule of the form
Abduction takes a Fact of the form
and matches it with a Rule of the form
to infer a Case of the form

For ease of reference, Figure 1 and the Legend beneath it summarize the classical terminology for the three types of inference and the relationships among them.

o-------------------------------------------------o
|                                                 |
|                   Z                             |
|                   o                             |
|                   |\                            |
|                   | \                           |
|                   |  \                          |
|                   |   \                         |
|                   |    \                        |
|                   |     \   R U L E             |
|                   |      \                      |
|                   |       \                     |
|               F   |        \                    |
|                   |         \                   |
|               A   |          \                  |
|                   |           o Y               |
|               C   |          /                  |
|                   |         /                   |
|               T   |        /                    |
|                   |       /                     |
|                   |      /                      |
|                   |     /   C A S E             |
|                   |    /                        |
|                   |   /                         |
|                   |  /                          |
|                   | /                           |
|                   |/                            |
|                   o                             |
|                   X                             |
|                                                 |
| Deduction takes a Case of the form X → Y,       |
| matches it with a Rule of the form Y → Z,       |
| then adverts to a Fact of the form X → Z.       |
|                                                 |
| Induction takes a Case of the form X → Y,       |
| matches it with a Fact of the form X → Z,       |
| then adverts to a Rule of the form Y → Z.       |
|                                                 |
| Abduction takes a Fact of the form X → Z,       |
| matches it with a Rule of the form Y → Z,       |
| then adverts to a Case of the form X → Y.       |
|                                                 |
| Even more succinctly:                           |
|                                                 |
|           Abduction Deduction Induction         |
|                                                 |
| Premise:     Fact Case Case                     |
| Premise:     Rule Rule Fact                     |
| Outcome:     Case Fact Rule                     |
|                                                 |
o-------------------------------------------------o
Figure 1.  Elementary Structure and Terminology

In its original usage a statement of Fact has to do with a deed done or a record made, that is, a type of event that is openly observable and not riddled with speculation as to its very occurrence. In contrast, a statement of Case may refer to a hidden or a hypothetical cause, that is, a type of event that is not immediately observable to all concerned. Obviously, the distinction is a rough one and the question of which mode applies can depend on the points of view that different observers adopt over time. Finally, a statement of a Rule is called that because it states a regularity or a regulation that governs a whole class of situations, and not because of its syntactic form. So far in this discussion, all three types of constraint are expressed in the form of conditional propositions, but this is not a fixed requirement. In practice, these modes of statement are distinguished by the roles that they play within an argument, not by their style of expression. When the time comes to branch out from the syllogistic framework, we will find that propositional constraints can be discovered and represented in arbitrary syntactic forms.

Example of inquiry

Examples of inquiry, that illustrate the full cycle of its abductive, deductive, and inductive phases, and yet are both concrete and simple enough to be suitable for a first (or zeroth) exposition, are somewhat rare in Peirce's writings, and so let us draw one from the work of fellow pragmatician John Dewey, analyzing it according to the model of zeroth-order inquiry that we developed above.

A man is walking on a warm day. The sky was clear the last time he observed it; but presently he notes, while occupied primarily with other things, that the air is cooler. It occurs to him that it is probably going to rain; looking up, he sees a dark cloud between him and the sun, and he then quickens his steps. What, if anything, in such a situation can be called thought? Neither the act of walking nor the noting of the cold is a thought. Walking is one direction of activity; looking and noting are other modes of activity. The likelihood that it will rain is, however, something suggested. The pedestrian feels the cold; he thinks of clouds and a coming shower. (John Dewey, How We Think, 1910, pp. 6-7).

Once over quickly

Let's first give Dewey's example of inquiry in everyday life the quick once over, hitting just the high points of its analysis into Peirce's three kinds of reasoning.

Abductive phase

In Dewey's "Rainy Day" or "Sign of Rain" story, we find our peripatetic hero presented with a surprising Fact:

  • Fact: C → A, In the Current situation the Air is cool.

Responding to an intellectual reflex of puzzlement about the situation, his resource of common knowledge about the world is impelled to seize on an approximate Rule:

  • Rule: B → A, Just Before it rains, the Air is cool.

This Rule can be recognized as having a potential relevance to the situation because it matches the surprising Fact, C → A, in its consequential feature A.

All of this suggests that the present Case may be one in which it is just about to rain:

  • Case: C → B, The Current situation is just Before it rains.

The whole mental performance, however automatic and semi-conscious it may be, that leads up from a problematic Fact and a previously settled knowledge base of Rules to the plausible suggestion of a Case description, is what we are calling an abductive inference.

Deductive phase

The next phase of inquiry uses deductive inference to expand the implied consequences of the abductive hypothesis, with the aim of testing its truth. For this purpose, the inquirer needs to think of other things that would follow from the consequence of his precipitate explanation. Thus, he now reflects on the Case just assumed:

  • Case: C → B, The Current situation is just Before it rains.

He looks up to scan the sky, perhaps in a random search for further information, but since the sky is a logical place to look for details of an imminent rainstorm, symbolized in our story by the letter B, we may safely suppose that our reasoner has already detached the consequence of the abduced Case, C → B, and has begun to expand on its further implications. So let us imagine that our up-looker has a more deliberate purpose in mind, and that his search for additional data is driven by the new-found, determinate Rule:

  • Rule: B → D, Just Before it rains, Dark clouds appear.

Contemplating the assumed Case in combination with this new Rule leads him by an immediate deduction to predict an additional Fact:

  • Fact: C → D, In the Current situation Dark clouds appear.

The reconstructed picture of reasoning assembled in this second phase of inquiry is true to the pattern of deductive inference.

Inductive phase

Whatever the case, our subject observes a Dark cloud, just as he would expect on the basis of the new hypothesis. The explanation of imminent rain removes the discrepancy between observations and expectations and thereby reduces the shock of surprise that made this process of inquiry necessary.

Looking more closely

Seeding hypotheses

Figure 4 gives a graphical illustration of Dewey's example of inquiry, isolating for the purposes of the present analysis the first two steps in the more extended proceedings that go to make up the whole inquiry.

o-----------------------------------------------------------o
|                                                           |
|     A                                               D     |
|      o                                             o      |
|       \ *                                       * /       |
|        \  *                                   *  /        |
|         \   *                               *   /         |
|          \    *                           *    /          |
|           \     *                       *     /           |
|            \   R u l e             R u l e   /            |
|             \       *               *       /             |
|              \        *           *        /              |
|               \         *       *         /               |
|                \          * B *          /                |
|              F a c t        o        F a c t              |
|                  \          *          /                  |
|                   \         *         /                   |
|                    \        *        /                    |
|                     \       *       /                     |
|                      \   C a s e   /                      |
|                       \     *     /                       |
|                        \    *    /                        |
|                         \   *   /                         |
|                          \  *  /                          |
|                           \ * /                           |
|                            \*/                            |
|                             o                             |
|                             C                             |
|                                                           |
| A  =  the Air is cool                                     |
| B  =  just Before it rains                                |
| C  =  the Current situation                               |
| D  =  a Dark cloud appears                                |
|                                                           |
| A is a major term                                         |
| B is a middle term                                        |
| C is a minor term                                         |
| D is a major term, associated with A                      |
|                                                           |
o-----------------------------------------------------------o
Figure 4.  Dewey's 'Rainy Day' Inquiry

In this analysis of the first steps of Inquiry, we have a complex or a mixed form of inference that can be seen as taking place in two steps:

  • The first step is an Abduction that abstracts a Case from the consideration of a Fact and a Rule.
Fact: C → A, In the Current situation the Air is cool.
Rule: B → A, Just Before it rains, the Air is cool.
Case: C → B, The Current situation is just Before it rains.
  • The final step is a Deduction that admits this Case to another Rule and so arrives at a novel Fact.
Case: C → B, The Current situation is just Before it rains.
Rule: B → D, Just Before it rains, a Dark cloud will appear.
Fact: C → D, In the Current situation, a Dark cloud will appear.

This is nowhere near a complete analysis of the Rainy Day inquiry, even insofar as it might be carried out within the constraints of the syllogistic framework, and it covers only the first two steps of the relevant inquiry process, but maybe it will do for a start.

One other thing needs to be noticed here, the formal duality between this expansion phase of inquiry and the argument from analogy. This can be seen most clearly in the propositional lattice diagrams shown in Figures 3 and 4, where analogy exhibits a rough "A" shape and the first two steps of inquiry exhibit a rough "V" shape, respectively. Since we find ourselves repeatedly referring to this expansion phase of inquiry as a unit, let's give it a name that suggests its duality with analogy—"catalogy" will do for the moment. This usage is apt enough if one thinks of a catalogue entry for an item as a text that lists its salient features. Notice that analogy has to do with the examples of a given quality, while catalogy has to do with the qualities of a given example. Peirce noted similar forms of duality in many of his early writings, leading to the consummate treatment in his 1867 paper "On a New List of Categories" (CP 1.545-559, W 2, 49-59).

Weeding hypotheses

In order to comprehend the bearing of inductive reasoning on the closing phases of inquiry there are a couple of observations that we need to make:

  • First, we need to recognize that smaller inquiries are typically woven into larger inquiries, whether we view the whole pattern of inquiry as carried on by a single agent or by a complex community.
  • Further, we need to consider the different ways in which the particular instances of inquiry can be related to ongoing inquiries at larger scales. Three modes of inductive interaction between the micro-inquiries and the macro-inquiries that are salient here can be described under the headings of the "Learning", the "Transfer", and the "Testing" of rules.

Analogy of experience

Throughout inquiry the reasoner makes use of rules that have to be transported across intervals of experience, from the masses of experience where they are learned to the moments of experience where they are applied. Inductive reasoning is involved in the learning and the transfer of these rules, both in accumulating a knowledge base and in carrying it through the times between acquisition and application.

  • Learning. The principal way that induction contributes to an ongoing inquiry is through the learning of rules, that is, by creating each of the rules that goes into the knowledge base, or ever gets used along the way.
  • Transfer. The continuing way that induction contributes to an ongoing inquiry is through the exploit of analogy, a two-step combination of induction and deduction that serves to transfer rules from one context to another.
  • Testing. Finally, every inquiry that makes use of a knowledge base constitutes a "field test" of its accumulated contents. If the knowledge base fails to serve any live inquiry in a satisfactory manner, then there is a prima facie reason to reconsider and possibly to amend some of its rules.

Let's now consider how these principles of learning, transfer, and testing apply to John Dewey's "Sign of Rain" example.

Learning

Rules in a knowledge base, as far as their effective content goes, can be obtained by any mode of inference.

For example, a rule like:

  • Rule: B → A, Just Before it rains, the Air is cool,

is usually induced from a consideration of many past events, in a manner that can be rationally reconstructed as follows:

  • Case: C → B, In Certain events, it is just Before it rains,
  • Fact: C → A, In Certain events, the Air is cool,
------------------------------------------------------------------------------------------
  • Rule: B → A, Just Before it rains, the Air is cool.

However, the very same proposition could also be abduced as an explanation of a singular occurrence or deduced as a conclusion of a presumptive theory.

Transfer

What is it that gives a distinctively inductive character to the acquisition of a knowledge base? It is evidently the "analogy of experience" that underlies its useful application. Whenever we find ourselves prefacing an argument with the phrase "If past experience is any guide..." then we can be sure that this principle has come into play. We are invoking an analogy between past experience, considered as a totality, and present experience, considered as a point of application. What we mean in practice is this: "If past experience is a fair sample of possible experience, then the knowledge gained in it applies to present experience". This is the mechanism that allows a knowledge base to be carried across gulfs of experience that are indifferent to the effective contents of its rules.

Here are the details of how this notion of transfer works out in the case of the "Sign of Rain" example:

Let K(pres) be a portion of the reasoner's knowledge base that is logically equivalent to the conjunction of two rules, as follows:

  • K(pres) = (B → A) and (B → D).

K(pres) is the present knowledge base, expressed in the form of a logical constraint on the present universe of discourse.

It is convenient to have the option of expressing all logical statements in terms of their logical models, that is, in terms of the primitive circumstances or the elements of experience over which they hold true.

  • Let E(past) be the chosen set of experiences, or the circumstances that we have in mind when we refer to "past experience".
  • Let E(poss) be the collective set of experiences, or the projective total of possible circumstances.
  • Let E(pres) be the present experience, or the circumstances that are present to the reasoner at the current moment.

If we think of the knowledge base K(pres) as referring to the "regime of experience" over which it is valid, then all of these sets of models can be compared by the simple relations of set inclusion or logical implication.

Figure 5 schematizes this way of viewing the "analogy of experience".

o-----------------------------------------------------------o
|                                                           |
|                          K(pres)                          |
|                             o                             |
|                            /|\                            |
|                           / | \                           |
|                          /  |  \                          |
|                         /   |   \                         |
|                        /  Rule   \                        |
|                       /     |     \                       |
|                      /      |      \                      |
|                     /       |       \                     |
|                    /     E(poss)     \                    |
|              Fact /         o         \ Fact              |
|                  /        *   *        \                  |
|                 /       *       *       \                 |
|                /      *           *      \                |
|               /     *               *     \               |
|              /    *                   *    \              |
|             /   *  Case           Case  *   \             |
|            /  *                           *  \            |
|           / *                               * \           |
|          /*                                   *\          |
|         o<<<---------------<<<---------------<<<o         |
|      E(past)        Analogy Morphism         E(pres)      |
|    More Known                              Less Known     |
|                                                           |
o-----------------------------------------------------------o
Figure 5.  Analogy of Experience

In these terms, the "analogy of experience" proceeds by inducing a Rule about the validity of a current knowledge base and then deducing a Fact, its applicability to a current experience, as in the following sequence:

Inductive Phase:

  • Given Case: E(past) → E(poss), Chosen events fairly sample Collective events.
  • Given Fact: E(past) → K(pres), Chosen events support the Knowledge regime.
-----------------------------------------------------------------------------------------------------------------------------
  • Induce Rule: E(poss) → K(pres), Collective events support the Knowledge regime.

Deductive Phase:

  • Given Case: E(pres) → E(poss), Current events fairly sample Collective events.
  • Given Rule: E(poss) → K(pres), Collective events support the Knowledge regime.
--------------------------------------------------------------------------------------------------------------------------------
  • Deduce Fact: E(pres) → K(pres), Current events support the Knowledge regime.
Testing

If the observer looks up and does not see dark clouds, or if he runs for shelter but it does not rain, then there is fresh occasion to question the utility or the validity of his knowledge base. But we must leave our foulweather friend for now and defer the logical analysis of this testing phase to another occasion.

See also

Notes

  1. ^ The UK dictionaries Collins and Longman list the spelling "inquiry" first, and Oxford simply calls it another spelling, without labeling it as US English.[1]

Citations

  1. ^ "enquiry (noun)". www.oxfordlearnersdictionaries.com. Oxford University Press. Retrieved April 2, 2021.
  2. ^ Rescher, N. (2012). Pragmatism: The Restoration of its Scientific Roots. New Brunswick, NJ: Transaction Press.
  3. ^ Dewey, John (1938). Logic: The Theory of Inquiry. New York:NY: D.C. Heath & Co.<http://www2.sunysuffolk.edu/osullis/spring07/courses/page0/history/documents_files/Dewey_pattern%20of%20inquiry.pdf>
  4. ^ Wikisource:The Fixation of Belief
  5. ^ Seixas, Peter (1993). "The Community of Inquiry as a Basis for Knowledge and Learning: The Case of History". American Educational Research Journal. 30 (2). Sage: 305–324. doi:10.3102/00028312030002305. S2CID 145345936.
  6. ^ Shields, Patricia (2003). "The Community of Inquiry". Administration & Society. 35 (5). Sage: 510–538. doi:10.1177/0095399703256160. S2CID 146759673.
  7. ^ Legg, C., Charles Peirce’s Limit Concept of Truth, Philosophy Compass 9 (3):204-213, published 5 March 2014, accessed 26 May 2024
  8. ^ Deuteronomy 4:32: New King James Version
  9. ^ Babylonian Talmud Chagigah 11b

Bibliography

  • Angluin, Dana (1989), "Learning with Hints", pp. 167–181 in David Haussler and Leonard Pitt (eds.), Proceedings of the 1988 Workshop on Computational Learning Theory, MIT, 3–5 August 1988, Morgan Kaufmann, San Mateo, CA, 1989.
  • Aristotle, "Prior Analytics", Hugh Tredennick (trans.), pp. 181–531 in Aristotle, Volume 1, Loeb Classical Library, William Heinemann, London, UK, 1938.
  • Awbrey, Jon, and Awbrey, Susan (1995), "Interpretation as Action : The Risk of Inquiry", Inquiry : Critical Thinking Across the Disciplines 15, 40–52. Eprint.
  • Delaney, C.F. (1993), Science, Knowledge, and Mind: A Study in the Philosophy of C.S. Peirce, University of Notre Dame Press, Notre Dame, IN.
  • Dewey, John (1910), How We Think, D.C. Heath, Lexington, MA, 1910. Reprinted, Prometheus Books, Buffalo, NY, 1991.
  • Dewey, John (1938), Logic: The Theory of Inquiry, Henry Holt and Company, New York, NY, 1938. Reprinted as pp. 1–527 in John Dewey, The Later Works, 1925–1953, Volume 12: 1938, Jo Ann Boydston (ed.), Kathleen Poulos (text. ed.), Ernest Nagel (intro.), Southern Illinois University Press, Carbondale and Edwardsville, IL, 1986.
  • Haack, Susan (1993), Evidence and Inquiry: Towards Reconstruction in Epistemology, Blackwell Publishers, Oxford, UK.
  • Hanson, Norwood Russell (1958), Patterns of Discovery, An Inquiry into the Conceptual Foundations of Science, Cambridge University Press, Cambridge, UK.
  • Hendricks, Vincent F. (2005), Thought 2 Talk: A Crash Course in Reflection and Expression, Automatic Press / VIP, New York, NY. ISBN 87-991013-7-8
  • Maxwell, Nicholas (2007) From Knowledge to Wisdom, Pentire Press, London.
  • Maxwell, Nicholas (2017), In Praise of Natural Philosophy: A Revolution for Thought and Life, McGill-Queen's University Press, Montreal.
  • Misak, Cheryl J. (1991), Truth and the End of Inquiry, A Peircean Account of Truth, Oxford University Press, Oxford, UK.
  • Peirce, C.S., (1931–1935, 1958), Collected Papers of Charles Sanders Peirce, vols. 1–6, Charles Hartshorne and Paul Weiss (eds.), vols. 7–8, Arthur W. Burks (ed.), Harvard University Press, Cambridge, MA. Cited as CP volume.paragraph.
  • Stalnaker, Robert C. (1984), Inquiry, MIT Press, Cambridge, MA.
  • Media related to Inquiry at Wikimedia Commons

Read other articles:

1931 American film DishonoredTheatrical release posterDirected byJosef von SternbergScreenplay byDaniel N. RubinStory byJosef von SternbergStarring Marlene Dietrich Victor McLaglen Gustav von Seyffertitz Warner Oland CinematographyLee GarmesEdited byJosef von SternbergMusic by Karl Hajos Herman Hand ProductioncompanyParamount PicturesDistributed byParamount PicturesRelease date April 4, 1931 (1931-04-04) (U.S.) Running time91 minutesCountryUnited StatesLanguageEnglish Disho...

 

National park in KwaZulu-Natal, South Africa Royal Natal National ParkPoliceman's Helmet in Royal Natal ParkLocation in KwaZulu-NatalLocationKwaZulu-Natal, South AfricaNearest cityHarrismithCoordinates28°41′20″S 28°56′42″E / 28.689°S 28.945°E / -28.689; 28.945Area80.94 km2 (31.25 sq mi)Established16 september 1916[1]Governing bodyEzemvelo KZN WildlifeThe dawn chorus in Royal Natal National Park, recorded by David Watts on 27...

 

HundtjärnenInsjöLand SverigeLänVästerbottens länKommunÅsele kommunLandskapLapplandSockenÅsele sockenKoordinater   WGS 8464°13′58″N 17°36′07″Ö / 64.23272°N 17.60196°Ö / 64.23272; 17.60196 (Hundtjärnen (Åsele socken, Lappland))  SWEREF 99 TM7125529, 626181 Hundtjärnen Topografiska kartan över Hundtjärnen. MåttAreal0,0936 km² [1]Höjd321,9 m ö.h. [2]Strandlinje1,18 km [2]FlödenHuvudavrinnings...

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Freygang (Begriffsklärung) aufgeführt. Freygang Freygang auf dem Sun Flowers Festival 2008 in Freiberg Allgemeine Informationen Genre(s) Bluesrock, Rock Gründung 1977 Auflösung 2019 Website www.freygang-band.com Gründungsmitglieder Gesang, Gitarre, Bluesharp, Violine, Bass, Lyra André Greiner-Pol († 2008) Gitarre Reiner Gaszak Bass Jens Saleh Schlagzeug Peter Talmann Saxophon Reiner Lorenz Keyboard Frank Nicolovi...

 

Cet article concerne le jeu sorti en arcade en 1983. Pour la série de jeux vidéo Punch-Out!!, voir Punch-Out!!. Pour le jeu sorti sur Wii en 2009, voir Punch-Out!! (jeu vidéo, 2009). Punch-Out!!Développeur Nintendo IRD (arcade)Nintendo R&D1 (Game & Watch)Éditeur NintendoCompositeur Kōji KondōProducteur Genyo TakedaDate de sortie JAP : 1983 1984Genre Jeu de boxeMode de jeu Un joueurPlate-forme Arcade, Amstrad CPC, Commodore 16, Commodore 64, Commodore Plus/4, MS-DOS, ZX...

 

Vueling.com IATA VY ICAO VLG Roepletters Vueling Vueling Airbus A320 Opgericht 2004 Eerste vlucht juli 2004 Hubs Barcelona Rome-Fiumincino Vloot 123 vliegtuigen Bestemmingen 163 Frequentflyer-programma Punto, Iberia Plus Alliantie - Moederbedrijf International Airlines Group (IAG) Hoofdkantoor Barcelona, Spanje Sleutelfiguren Alex Cruz (CEO), Josep Piqué (Voorzitter) Website http://www.vueling.com/nl Portaal    Luchtvaart Het hoofdkantoor van Vueling Vueling Airlines is een Spaanse...

طعام يدهن على الخبزمعلومات عامةالنوع طعام — semi-liquid food (en) [1] تعديل - تعديل مصدري - تعديل ويكي بيانات يباع عادة الزبدة كعصي أو كتل صغيرة، ويمسح في كثير من الأحيان باستخدام سكين الزبد. طعام الدَهن أو المدهون أو الممدود أو المفروش هو أي نوع من المأكولات التي تدهن بسكين على الخ

 

الدوري الإسكتلندي الممتاز 2000–01 تفاصيل الموسم الدوري الاسكتلندي الممتاز  النسخة 104  البلد المملكة المتحدة  التاريخ بداية:29 يوليو 2000  نهاية:19 مايو 2001  المنظم اتحاد اسكتلندا لكرة القدم  البطل نادي سلتيك  مباريات ملعوبة 228   عدد المشاركين 12   الدوري الاسكت

 

Ця стаття є сирим перекладом з іншої мови. Можливо, вона створена за допомогою машинного перекладу або перекладачем, який недостатньо володіє обома мовами. Будь ласка, допоможіть поліпшити переклад. (серпень 2013) Малколм Іксангл. Malcolm X Малколм Ікс в 1964Ім'я при народженні М

Stubbs Terrace street sign. Below the sign is a sign explaining the origin of that street's name. Daglish, Western Australia is a suburb of Perth. The first portion that developed was the area bounded by Stubbs Terrace, Cunningham Terrace, Millington Avenue, Troy Terrace and Robinson Terrace.[1] The streets in this area were named c. 1928, and most were named after Western Australian politicians or personnel at the Municipality of Subiaco.[2] The second area to develop w...

 

粤港澳大湾区建设领导小组 1999年规定:印章直径5厘米,中央刊五角星,由国务院制发。 主要领导 组长 丁薛祥(政治局常委、国务院第一副总理,正国级) 副组长(2) 黄坤明(政治局委员、中共广东省委书记,副国级)何立峰(国务院副总理,副国级) 机构概况 上级机构 中华人民共和国国务院 机构类型 国务院议事协调机构 办事机构 粤港澳大湾区建设领导小组办公室...

 

2018 film LemonadeFilm posterDirected byIoana UricaruWritten byIoana UricaruStarringMalina ManoviciRelease dates 19 February 2018 (2018-02-19) (Berlin) 26 October 2018 (2018-10-26) (Romania) Running time88 minutesCountryRomaniaLanguageEnglish Lemonade (Romanian: Luna de miere) is a 2018 Romanian drama film directed by Ioana Uricaru. It was screened in the Panorama section at the 68th Berlin International Film Festival.[1] The Romanian-Canadian co-...

German Wine Queen 2011/2012 Annika StrebelAnnika Strebel, the day after her electionBorn (1987-12-03) 3 December 1987 (age 36)Worms, GermanyOccupationVintnerKnown forGerman Wine Queen 2011/2012 Annika Strebel (born 1987), from the German Rheinhessen wine region, was chosen as the 63rd German Wine Queen on 30 September 2011 in the town of Neustadt an der Weinstraße, as the successor to Mandy Großgarten from the Ahr wine region.[1] The German Wine Princesses supporting her d...

 

Grupo de Amigos Personales GAP Placa conmemorativa en honor a los miembros caídos del GAP en el Edificio de la Intendencia Metropolitana de Santiago.Activa 1970-1973País  ChileFidelidad Salvador Allende Gobierno de Salvador Allende Partido Socialista de ChileFunción Guardaespaldas, dispositivo de seguridad presidencialTamaño 50 (1973, aproximado)Acuartelamiento Santiago de ChileEquipamiento AK-47, RPG-7, PistolasDisolución 11 de septiembre de 1973Alto mandoComandantesnotables Doming...

 

Philosophy in the Roman world, influenced by Hellenistic philosophy Roman philosophy redirects here. For philosophy in (lands descended from) the Western Roman Empire, see Latin philosophy (disambiguation). For philosophy in the Eastern Roman Empire, see Byzantine philosophy. Part of a series onPhilosophy  Philosophy portal Contents Outline Lists Glossary History Categories Disambiguation Philosophies By period Ancient Ancient Egyptian Ancient Greek Medieval Renaissance Modern Contem...

Standard time (UTC+01:00) Time in Europe: Light Blue Western European Time / Greenwich Mean Time (UTC) Blue Western European Time / Greenwich Mean Time (UTC) Western European Summer Time / British Summer Time / Irish Standard Time (UTC+1) Red Central European Time (UTC+1) Central European Summer Time (UTC+2) Yellow Eastern European Time / Kaliningrad Time (UTC+2) Ochre Eastern European Time (UTC+2) Eastern European Summer Time (UTC+3) Green Moscow Time / Turkey Time (UTC+3) Turquoise Armenia ...

 

Modelling its structure and composition Artist's conception of a protoplanetary disk The formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud.[1] Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed. This model, known as the nebular hypothesis, wa...

 

1930s Italian fighter aircraft C.200 Saetta The National Museum of the United States Air Force's preserved C.200 in the markings of 372o Squadriglia, Regia Aeronautica. Role FighterType of aircraft Manufacturer Aeronautica Macchi Designer Mario Castoldi First flight 24 December 1937 Introduction 1939 Retired 1947 Primary user Regia Aeronautica Number built 1,151 + 2 Prototypes[1][2] Developed into Macchi C.202 The Macchi C.200 Saetta (Italian: Lightning), or MC.200, was a...

Spanish military leader and diplomat (1507–1582) In this Spanish name, the first or paternal surname is Álvarez de Toledo and the second or maternal family name is Pimentel. The Most ExcellentFernando Álvarez de Toledo3rd Duke of Alba GEPortrait by Antonis Mor12th Constable of PortugalIn office1581–1582MonarchPhilip I of PortugalPreceded byJohn, 6th Duke of BraganzaSucceeded byTeodósio II, 7th Duke of Braganza1st Viceroy of Portugal and the AlgarvesIn office18 July 1580 ...

 

Chinese TV series or program Imperfect VictimPromotional posterChinese不完美受害人Hanyu PinyinBù wánměi shòuhài rén GenreLegal dramaCrimeSuspenseWritten byGao Xuan Ren BaoruDirected byYang YangStarringZhou XunLiu YijunLin YunElane Zhong Chen Shu Liu Ying Dong JieTheme music composerDong Dongdong Chen XiEnding themeImperfect by Mao AminCountry of originChinaOriginal languageMandarinNo. of seasons1No. of episodes29ProductionProduction locationsQingdao, ShandongCinematographyHuang Z...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!