In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S+ of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m-planes are represented by the intersections of (m+1)-planes passing through the origin in Minkowski space with S+ or by wedge products of m vectors. Hyperbolic space is embedded isometrically in Minkowski space; that is, the hyperbolic distance function is inherited from Minkowski space, analogous to the way spherical distance is inherited from Euclidean distance when the n-sphere is embedded in (n+1)-dimensional Euclidean space.
If (x0, x1, ..., xn) is a vector in the (n + 1)-dimensional coordinate space Rn+1, the Minkowski quadratic form is defined to be
The vectors v ∈ Rn+1 such that Q(v) = -1 form an n-dimensional hyperboloidS consisting of two connected components, or sheets: the forward, or future, sheet S+, where x0>0 and the backward, or past, sheet S−, where x0<0. The points of the n-dimensional hyperboloid model are the points on the forward sheet S+.
The metric on the hyperboloid isThe Minkowski bilinear formB is the polarization of the Minkowski quadratic form Q,
(This is sometimes also written using scalar product notation )
Explicitly,
The hyperbolic distance between two points u and v of S+ is given by the formula
The bilinear form also functions as the metric tensor over the space. In n+1 dimensional Minkowski space, there are two choices for the metric with opposite signature, in the 3-dimensional case either (+, −, −) or (−, +, +).
If the signature (−, +, +) is chosen, then the scalar square of chords between distinct points on the same sheet of the hyperboloid will be positive, which more closely aligns with conventional definitions and expectations in mathematics. Then n-dimensional hyperbolic space is a Riemannian space and distance or length can be defined as the square root of the scalar square. If the signature (+, −, −) is chosen, scalar square between distinct points on the hyperboloid will be negative, so various definitions of basic terms must be adjusted, which can be inconvenient. Nonetheless, the signature (+, −, −, −) is also common for describing spacetime in physics. (Cf. Sign convention#Metric signature.)
Straight lines
A straight line in hyperbolic n-space is modeled by a geodesic on the hyperboloid. A geodesic on the hyperboloid is the (non-empty) intersection of the hyperboloid with a two-dimensional linear subspace (including the origin) of the n+1-dimensional Minkowski space. If we take u and v to be basis vectors of that linear subspace with
and use w as a real parameter for points on the geodesic, then
More generally, a k-dimensional "flat" in the hyperbolic n-space will be modeled by the (non-empty) intersection of the hyperboloid with a k+1-dimensional linear subspace (including the origin) of the Minkowski space.
Isometries
The indefinite orthogonal group O(1,n), also called the
(n+1)-dimensional Lorentz group, is the Lie group of real (n+1)×(n+1) matrices which preserve the Minkowski bilinear form. In a different language, it is
the group of linear isometries of the Minkowski space. In particular, this group preserves the hyperboloid S. Recall that indefinite orthogonal groups have four connected components, corresponding to reversing or preserving the orientation on each subspace (here 1-dimensional and n-dimensional), and form a Klein four-group. The subgroup of O(1,n) that preserves the sign of the first coordinate is the orthochronous Lorentz group, denoted O+(1,n), and has two components, corresponding to preserving or reversing the orientation of the spatial subspace. Its subgroup SO+(1,n) consisting of matrices with determinant one is a connected Lie group of dimension n(n+1)/2 which acts on S+ by linear automorphisms and preserves the hyperbolic distance. This action is transitive and the stabilizer of the vector (1,0,...,0) consists of the matrices of the form
The group SO+(1,n) is the full group of orientation-preserving isometries of the n-dimensional hyperbolic space.
In more concrete terms, SO+(1,n) can be split into n(n-1)/2 rotations (formed with a regular Euclidean rotation matrix in the lower-right block) and n hyperbolic translations, which take the form
where is the distance translated (along the x axis in this case), and the 2nd row/column can be exchanged with a different pair to change to a translation along a different axis. The general form of a translation in 3 dimensions along the vector is:
where . This extends naturally to more dimensions, and is also the simplified version of a Lorentz boost when you remove the relativity-specific terms.
Examples of groups of isometries
The group of all isometries of the hyperboloid model is O+(1,n). Any group of isometries is a subgroup of it.
Reflections
For two points , there is a unique reflection exchanging them.
Let .
Note that , and therefore .
Then
is a reflection that exchanges and .
This is equivalent to the following matrix:
Then is a group of isometries.
All such subgroups are conjugate.
Rotations and reflections
is the group of rotations and reflections that preserve .
The function is an isomorphism from O(n) to this group.
For any point , if is an isometry that maps to , then is the group of rotations and reflections that preserve .
Translations
For any real number , there is a translation
This is a translation of distance in the positive x direction if or of distance in the negative x direction if .
Any translation of distance is conjugate to and .
The set is the group of translations through the x-axis, and a group of isometries is conjugate to it if and only if it is a group of isometries through a line.
For example, let's say we want to find the group of translations through a line .
Let be an isometry that maps to and let be an isometry that fixes and maps to .
An example of such a is a reflection exchanging and (assuming they are different), because they are both the same distance from .
Then is an isometry mapping to and a point on the positive x-axis to .
is a translation through the line of distance .
If , it is in the direction.
If , it is in the direction.
is the group of translations through .
Symmetries of horospheres
Let H be some horosphere such that points of the form are inside of it for arbitrarily large x.
For any vector b in
is a hororotation that maps H to itself.
The set of such hororotations is the group of hororotations preserving H.
All hororotations are conjugate to each other.
For any in O(n-1)
is a rotation or reflection that preserves H and the x-axis.
These hororotations, rotations, and reflections generate the group of symmetries of H.
The symmetry group of any horosphere is conjugate to it.
They are isomorphic to the Euclidean group E(n-1).
According to Jeremy Gray (1986),[5]Poincaré used the hyperboloid model in his personal notes in 1880. Poincaré published his results in 1881, in which he discussed the invariance of the quadratic form .[6] Gray shows where the hyperboloid model is implicit in later writing by Poincaré.[7]
Also Homersham Cox in 1882[8][9] used Weierstrass coordinates (without using this name) satisfying the relation as well as .
The hyperboloid was explored as a metric space by Alexander Macfarlane in his Papers in Space Analysis (1894). He noted that points on the hyperboloid could be written as
H. Jansen made the hyperboloid model the explicit focus of his 1909 paper "Representation of hyperbolic geometry on a two sheeted hyperboloid".[15]
In 1993 W.F. Reynolds recounted some of the early history of the model in his article in the American Mathematical Monthly.[16]
Being a commonplace model by the twentieth century, it was identified with the Geschwindigkeitsvectoren (velocity vectors) by Hermann Minkowski in his 1907 Göttingen lecture 'The Relativity Principle'. Scott Walter, in his 1999 paper "The Non-Euclidean Style of Minkowskian Relativity"[17] recalls Minkowski's awareness, but traces the lineage of the model to Hermann Helmholtz rather than Weierstrass and Killing.
In the early years of relativity the hyperboloid model was used by Vladimir Varićak to explain the physics of velocity. In his speech to the German mathematical union in 1912 he referred to Weierstrass coordinates.[18]
^See also Poincaré: On the fundamental hypotheses of geometry 1887 Collected works vol.11, 71-91 and referred to in the book of B.A. Rosenfeld A History of Non-Euclidean Geometry p.266 in English version (Springer 1988).
Ryan, Patrick J. (1986), Euclidean and non-Euclidean geometry: An analytical approach, Cambridge, London, New York, New Rochelle, Melbourne, Sydney: Cambridge University Press, ISBN978-0-521-25654-4
Spanish theatre director and actor (1917–1989) Roberto CamardielRobert Camardiel as Tucumcari station clerk in For a Few Dollars More (1965)BornSaturnino Roberto Camardiel Escudero(1917-11-29)29 November 1917Alagón, Zaragoza, SpainDied15 June 1989(1989-06-15) (aged 71)Zaragoza, SpainOccupationActorYears active1938–1985 Roberto Camardiel Escudero (29 November 1917, in Alagón, Zaragoza – 15 June 1989, in Zaragoza) was a Spanish theatre director and actor.[1] He appeare...
Bandar Udara Internasional Sultan Mahmud Badaruddin IISultan Mahmud Badaruddin II International Airport IATA: PLMICAO: WIPPWMO: 96221InformasiJenisPublik / MiliterPemilikPT Aviasi Pariwisata Indonesia (Persero)PengelolaPT Angkasa Pura IIMelayaniPatungraya AgungLokasiKota Palembang, Sumatera Selatan, IndonesiaMaskapai utama Citilink Lion Air Super Air Jet Zona waktuWIB (UTC+07:00)Ketinggian dpl37 mdplKoordinat02°54′01″S 104°42′00″E / 2.90028°S 104.70000°E&...
Islamic political party in Algeria This article is about the political party in Algeria whose abbreviation is Hamas. For the Palestinian organization, see Hamas. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Movement of Society for Peace – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how...
American lawyer, Forty-niner, border ruffian (1811–1856) For other people named Lawrence Washington, see Lawrence Washington (disambiguation). Lawrence Berry WashingtonBirth nameLawrence Berry WashingtonBorn(1811-11-26)November 26, 1811Cedar Lawn near Charles Town, Virginia (now West Virginia), U.S.DiedSeptember 21, 1856(1856-09-21) (aged 44)Missouri River near Rocheport, Missouri, United StatesAllegianceUnited StatesService/branchUnited States ArmyYears of service1846–48 (USA)R...
Théâtre municipal de FontainebleauLe théâtre et sa cour, vus depuis les escaliers à l'entrée, en mai 2021.PrésentationType ThéâtreFondation 1905Orientation Sud-estStyle Style Louis XIIIArchitectes Fernand Lucas (d), Paul Marion (d)Matériau brique et pierreOuverture 9 mars 1912Restauration 1991 et 2011Propriétaire Ville de Fontainebleau (d)Patrimonialité Inscrit MH (1991)LocalisationAdresse 6 rue Denecourt (d) Fontainebleau, Seine-et-Marne FranceCoordonnées 48° 24�...
Свята Христина — термін, який має кілька значень. Ця сторінка значень містить посилання на статті про кожне з них.Якщо ви потрапили сюди за внутрішнім посиланням, будь ласка, поверніться та виправте його так, щоб воно вказувало безпосередньо на потрібну статтю.@ пошук поси
Place Arnaud-Bernard Situation Coordonnées 43° 36′ 40″ nord, 1° 26′ 20″ est Pays France Région Occitanie Département Haute-Garonne Métropole Toulouse Métropole Ville Toulouse Morphologie Type Place Géolocalisation sur la carte : Toulouse Géolocalisation sur la carte : France modifier La place Arnaud-Bernard est une place du centre-ville de Toulouse. Situation et accès Allongée dans le sens nord-ouest—sud-est, la place est situ...
La dilatación del tiempo explica por qué dos relojes en funcionamiento reportaron tiempos diferentes después de diferentes aceleraciones. Por ejemplo, en el ISS el tiempo va más lento, con respecto a un observador en la Tierra, con un retraso de 0,007 segundos por cada seis meses. Para que los satélites GPS funcionen, deben ajustarse para una flexión similar del espacio-tiempo para coordinar con los sistemas en la Tierra.[1] De acuerdo con la teoría de la relatividad, la dilatac...
Territoire de Dimbelenge Fabrication d'huile de palme, Lac Mukamba Administration Pays République démocratique du Congo Province Kasaï central Nombrede députés 2 Démographie Langue nationale Tchiluba Géographie Coordonnées 5° 33′ sud, 23° 06′ est Superficie 13 223 km2 Localisation Géolocalisation sur la carte : République démocratique du Congo Territoire de Dimbelenge Géolocalisation sur la carte : République démocratique du Congo Te...
Parken Der Parken in Kopenhagen (2016) Frühere Namen Københavns Idrætspark (1911–1990) Sponsorenname(n) Telia Parken (2014–2020) Daten Ort Øster Allé 50Danemark 2100 Kopenhagen, Dänemark Koordinaten 55° 42′ 9,4″ N, 12° 34′ 20″ O55.70261112.572228Koordinaten: 55° 42′ 9,4″ N, 12° 34′ 20″ O Klassifikation 4 Eigentümer Parken Sport & Entertainment Eröffnung 25. Mai 1911Neueröffnung: 9. September 1992 ...
André CitroënAndré Citroën on an ocean voyageLahirAndré-Gustave Citroën(1878-02-05)5 Februari 1878Paris, PrancisMeninggal3 Juli 1935(1935-07-03) (umur 57)Paris, PrancisKebangsaanFrenchPekerjaanPebisnis, insinyurDikenal atasPendiri CitroënOrang tuaLevie Citroen dan Masza Amelia Kleinman André-Gustave Citroën (5 Februari 1878 – 3 Juli 1935) adalah seorang industrialis Prancis dan pendiri pembuat mobil Prancis, Citroën. Dia dikenang terutama karena merek mobil yang...
U.S. military campaign in World War II Guadalcanal campaignPart of the Solomon Islands campaign of the Pacific Theater of World War IIUnited States Marines rest in the field during the Guadalcanal campaign.Date7 August 1942 – 9 February 1943(6 months and 2 days)LocationGuadalcanal, British Solomon Islands9°26′44″S 160°01′13″E / 9.44556°S 160.02028°E / -9.44556; 160.02028Result Allied victoryBelligerents United States United Kingd...
Dieser Artikel beschreibt den Swing-Rhythmus. Gelegentlich wird auch der Shuffle-Rhythmus als Swing bezeichnet. Der Swing (englisch für „Schwingen“) ist ein fließender, „schwingender“ Rhythmus, der besonders im Jazz verwendet wird. Diese Rhythmik gehört zu den wesentlichsten Elementen der meisten Genres des Jazz.[1] Er findet sich aber fallweise auch in anderen Musikarten, wie dem zum Country gehörenden Western Swing. Inhaltsverzeichnis 1 Ältere Erklärungsansätze 1.1 Se...
Gooi en Vechtstreek Regio in Nederland Situering Provincie Noord-Holland, Utrecht COROP-gebied Het Gooi en Vechtstreek Algemeen Inwoners (2017) 250.692[1] Bestuurscentrum Hilversum Gemeenten Hilversum, Gooise Meren, Blaricum, Eemnes, Laren, Huizen en Wijdemeren Station(s) Bussum Zuid, Hilversum, Hilversum Media Park, Hilversum Sportpark en Naarden-Bussum Foto's Gooi en Vechtstreek (paars) ligt in het zuidoosten van Noord-Holland Bevolkingspiramide Portaal Nederland De reg...
Piala AlbaniaMulai digelar1939Wilayah AlbaniaJumlah tim64Juara bertahanKF LaciTim tersuksesKF Tirana(15 gelar) KF Partizani Tirana(15 gelar)Situs webSitus resmi Piala Albania 2013–14 Piala Albania (bahasa Albania: Kupa e Shqipërisë) adalah sebuah kejuaraan sepak bola yang diselenggarakan di Albania. Kejuaraan dimulai sejak tahun 1939 sebagai Kupa e Mbretit (English:The King's Cup). Pemenangnya akan mengikuti babak pertama kualifikasi Liga Eropa UEFA. Daftar juara Tahun Juara Runn...
ГидраHydra Глава «Гидры» Барон Штрукер и агенты организации на обложке Secret Warriors #2 (март 2009)Художники Джим Чеунг и Джастин Понсор Информация и данные Вселенная Marvel Comics Авторство Стэн Ли Джек Кирби Первоепоявление Strange Tales #135 (август 1965) Общая информация Тип Террористическая �...
Japanese manga series High-Rise InvasionCover of the second tankōbon volume of High-Rise Invasion, featuring protagonist Yuri Honjō.天空侵犯(Tenkū Shinpan)GenreAction,[1] isekai,[2] survival[3] MangaWritten byTsuina MiuraIllustrated byTakahiro ObaPublished byKodanshaEnglish publisherNA: Seven Seas EntertainmentMagazineManga BoxDemographicShōnenOriginal runDecember 5, 2013 – April 4, 2019Volumes21 (List of volumes) MangaHigh-Rise Invasion Arrive...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) ديك إليوت معلومات شخصية الميلاد 26 سبتمبر 1935 الوفاة 7 يونيو 2014 (78 سنة) فلورنس مواطنة الولايات المتحدة مناصب الحياة العملية المدرسة الأم جامعة كليم...
Ini adalah nama Korea; marganya adalah Kim. Kim Young-okKim Young-ok pada tahun 2019Lahir5 Desember 1937 (umur 86)Keijō, Gyeonggi, Jepang KoreaPekerjaanAktrispengisi suaraTahun aktif1957-sekarangNama KoreaHangul김영옥 Hanja金英玉 Alih AksaraGim Yeong-okMcCune–ReischauerKim Yŏng-ok Kim Young-ok (Hangul: 김영옥; lahir 5 Desember 1937)[1] adalah seorang aktris Korea Selatan yang debut pada tahun 1957.[2] Dia dikenal sebagai Nenek Nasional Korea Sel...