Sign convention

In physics, a sign convention is a choice of the physical significance of signs (plus or minus) for a set of quantities, in a case where the choice of sign is arbitrary. "Arbitrary" here means that the same physical system can be correctly described using different choices for the signs, as long as one set of definitions is used consistently. The choices made may differ between authors. Disagreement about sign conventions is a frequent source of confusion, frustration, misunderstandings, and even outright errors in scientific work. In general, a sign convention is a special case of a choice of coordinate system for the case of one dimension.

Sometimes, the term "sign convention" is used more broadly to include factors of the imaginary unit i and 2π, rather than just choices of sign.

Relativity

Metric signature

In relativity, the metric signature can be either (+,−,−,−) or (−,+,+,+). (Throughout this article, the signs of the eigenvalues of the metric are displayed in the order that presents the timelike component first, followed by the spacelike components). A similar convention is used in higher-dimensional relativistic theories; that is, (+,−,−,−,...) or (−,+,+,+,...). A choice of signature is associated with a variety of names, physics discipline, and notable graduate-level textbooks:

Comparison of metric signatures in general relativity
Metric signature (+,−,−,−) (−,+,+,+)
Spacetime interval convention timelike spacelike
Subject area primarily using convention Particle physics and Relativity Relativity
Corresponding metric tensor
Mass–four momentum relationship
Common names of convention
    • East coast convention
    • "Mostly pluses"
    • Pauli convention
Graduate textbooks using convention

Curvature

The Ricci tensor is defined as the contraction of the Riemann tensor. Some authors use the contraction , whereas others use the alternative . Due to the symmetries of the Riemann tensor, these two definitions differ by a minus sign.

In fact, the second definition of the Ricci tensor is . The sign of the Ricci tensor does not change, because the two sign conventions concern the sign of the Riemann tensor. The second definition just compensates the sign, and it works together with the second definition of the Riemann tensor (see e.g. Barrett O'Neill's Semi-riemannian geometry).

Other sign conventions

It is often considered good form to state explicitly which sign convention is to be used at the beginning of each book or article.

See also

References

  • Charles Misner; Kip S Thorne & John Archibald Wheeler (1973). Gravitation. San Francisco: W. H. Freeman. p. cover. ISBN 0-7167-0344-0.{{cite book}}: CS1 maint: multiple names: authors list (link)

Read other articles:

「金ちゃん」はこの項目へ転送されています。吉本興業所属のお笑いコンビについては「鬼越トマホーク#メンバー」を、auのイメージキャラクター金ちゃんについては「auのイメージキャラクター#現在のイメージキャラクター」をご覧ください。 徳島製粉株式会社Tokushima Seifun Inc.種類 株式会社略称 徳粉、金ちゃん本社所在地 日本〒770-8063徳島市南二軒屋町3丁目1-8設立 ...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Keamanan antarmuka pemrograman aplikasi web – berita · surat kabar · buku · cendekiawan · JSTOR Keamanan antarmuka pemrograman aplikasi web adalah sistem pengamanan pada akses pengguna atau integrasi sis...

 

Pemilihan umum Bupati Sijunjung 201520102020Kandidat Peta persebaran suara Peta lokasi Sijunjung Bupati petahanaYuswir Arifin Bupati terpilih Yuswir Arifin Sunting kotak info • L • BBantuan penggunaan templat ini Pemilihan umum Bupati Sijunjung 2015 dilaksanakan pada 9 Desember 2015 untuk memilih Bupati dan Wakil Bupati Kabupaten Sijunjung periode 2015-2020. Kandidat KPUD Kabupaten Sijunjung telah menetapkan tiga pasang kandidat peserta Pilbup Sijunjung 2015.[1] No Urut ...

Cet article est une ébauche concernant la politique tunisienne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Gouvernement de la TunisieArmoiries de la TunisieHistoireFondation 20 mars 1956CadreSiège Dar El Bey, TunisPays  TunisieOrganisationChef du gouvernement Ahmed Hachani (depuis 2023)Site web (ar) www.tunisie.gov.tnmodifier - modifier le code - modifier Wikidata Le gouvernement de la Tunisie es...

 

Пфефель Ернестіна Баронеса Дернберг на портреті пензля Штилера, 1830 рік.Народилася 1810(1810)Померла 1894(1894)Громадянство  НімеччинаДіяльність письменницяСфера роботи література[1]Мова творів російська[1]Рід ТютчевиdБатько Christian Hubert von PfeffeldМати Carolina, Freiin von TettenborndУ шлю

 

Démocrates pour Andorre(ca) Demòcrates per Andorra Logotype officiel. Présentation Président Xavier Espot Zamora Fondation 30 septembre 2011 Siège C/Babot Camp, 13,Andorre-la-Vieille Vice-présidents Esther ParísJoan Zamora Secrétaire général Carles Torralba Secrétaire d'organisation Estanislau Sangrà Positionnement Centre droit Idéologie Libéral-conservatisme Affiliation européenne Parti populaire européen Couleurs Bleu et orange Site web http://www.democrates.ad Présidents d...

筑紫女学園中学校・高等学校 北緯33度34分54.3秒 東経130度23分19.9秒 / 北緯33.581750度 東経130.388861度 / 33.581750; 130.388861座標: 北緯33度34分54.3秒 東経130度23分19.9秒 / 北緯33.581750度 東経130.388861度 / 33.581750; 130.388861過去の名称 筑紫高等女学校筑紫女子高等学校国公私立の別 私立学校設置者 学校法人筑紫女学園設立年月日 1907年(明治30年)創立...

 

ليك بليستانت     الإحداثيات 43°28′00″N 74°25′00″W / 43.466666666667°N 74.416666666667°W / 43.466666666667; -74.416666666667  [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة هاميلتون، نيويورك  خصائص جغرافية  المساحة 197.98 ميل مربع  ارتفاع 558 متر  عدد السك

 

狗肉《辐射》系列角色《辐射4》(2015年)中的狗肉创作者蒂姆·坎设计傑斯·海因格(英语:Jess Heinig)角色设定信息物種狗 狗肉(英语:Dogmeat)是末日幻想类系列角色扮演游戏(RPG)《辐射》中反复出现的非玩家角色(NPC)。它在1997年发行的首版《辐射》游戏(下文称这一版本为《辐射1》)中作为可选队友首次出现,并在续作《辐射2》(1998年)和其它一些游戏中作为客...

Cet article est une ébauche concernant le chemin de fer et la Suisse. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Gürbetal – Bern – Schwarzenburg Ligne de Thoune à Schwarzenburg via Berne RBDe 4/4 en gare de Thurnen. Pays Suisse Villes desservies Thoune, Bern, Schwarzenburg Historique Mise en service 1901 – 1907 Électrification 1920 Concessionnaires GTB (1907 – 1944)BSB (1907&#...

 

Women's freestyle 53 kgat the Games of the XXXI OlympiadMedalistsVenueCarioca Arena 2Date18 August 2016Competitors19 from 19 nationsMedalists Helen Maroulis  United States Saori Yoshida  Japan Nataliya Synyshyn  Azerbaijan Sofia Mattsson  Sweden2020 → Wrestling at the2016 Summer OlympicsQualificationFreestyleGreco-RomanWomen57 kg59 kg48 kg65 kg66 kg53 kg74 kg75 kg58 kg86 kg85 kg63 kg97 kg98 kg69 kg125 kg130 kg75 kgvte Main article: Wrestling at the 201...

 

Train station on the Matsuura Railway line in Saga Prefecture, Japan Kawahigashi Station川東駅Shaded station platform in May 2008General informationLocationImari, Saga PrefectureJapanCoordinates33°16′3.84″N 129°51′51.07″E / 33.2677333°N 129.8641861°E / 33.2677333; 129.8641861Operated byMatsuura RailwayLine(s)■ Nishi-Kyūshū LineDistance11.6 km from Arita StationPlatforms1Tracks1ConstructionStructure typeAt-gradeOther informationWebsiteOfficial website...

Shadrake v Attorney-GeneralThe Supreme Court Building, Singapore, on 10 February 2007CourtCourt of Appeal of SingaporeFull case nameShadrake Alan v. Attorney-General Decided27 May 2011Citation(s)[2011] SGCA 26,[2011] 3 S.L.R. 778Case historyAppealed from[2010] SGHC 327,[2011] 2 S.L.R. 445;[2010] SGHC 339,[2011] 2 S.L.R. 506 (sentence)Court membershipJudge(s) sittingAndrew Phang Boon Leong J.A., Lai Siu Chiu and Philip Pillai JJ.Case opinionsThe real risk test is the te...

 

Princely state of India Kalahandi StateKarond StatePrincely State of British India1005–1948 Flag Coat of arms Kalahandi State in the Imperial Gazetteer of IndiaCapitalBhawanipatnaArea • 18929,700 km2 (3,700 sq mi)Population • 1892 224,548 HistoryHistory • Established 1005• Accession to the Union of India 1948 Preceded by Succeeded by Eastern Ganga dynasty India Today part ofOdisha, India Kalahandi State, also known as Karond State,&#...

 

County in Gwandong, South KoreaHwacheon 화천군CountyKorean transcription(s) • Hangul화천군 • Hanja華川郡 • Revised RomanizationHwacheon-gun • McCune-ReischauerHwach'ŏn-gun FlagEmblem of HwacheonLocation in South KoreaCountry South KoreaRegionGwandongAdministrative divisions1 eup, 4 myeonArea • Total909.45 km2 (351.14 sq mi)Population (2005) • Total23,822 • Density26.2/km...

Species of moth Phyllonorycter salicicolella Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Lepidoptera Family: Gracillariidae Genus: Phyllonorycter Species: P. salicicolella Binomial name Phyllonorycter salicicolella(Sircom, 1848)[1] Synonyms Lithocolletis salicicolella Argyromiges salicicolella Sircom, 1848 Lithocolletis brevilineatella Benander, 1946 Phyllonorycter salicicolella is a moth of the family Gracillariidae. It ...

 

Liga Bank MandiriMusim2002JuaraPetrokimia PutraLiga Champions AFC 2002-03 Petrokimia Putra Persita Tangerang Pemain terbaik Ilham Jaya Kesuma(Persita Tangerang)Pencetak golterbanyak Ilham Jaya Kesuma (26)(Persita Tangerang)Kemenangan tandangterbesarPersija Jakarta 4-2 Persikab Kab. Bandung (13 Februari 2002) (wilayah barat)Jumlah penontontertinggi50,000 (7 Juli 2002)Rata-ratajumlah penonton40,000← 2001 2003 → Divisi Utama Liga Indonesia 2002 adalah musim kedelapan Liga Indonesia. Terdapat...

 

2013 single by Little Big TownYour Side of the BedSingle by Little Big Townfrom the album Tornado ReleasedApril 8, 2013 (2013-04-08)Recorded2012GenreCountryLength3:41LabelCapitol NashvilleSongwriter(s)Lori McKennaKaren FairchildJimi WestbrookKimberly SchlapmanPhillip SweetProducer(s)Jay JoyceLittle Big Town singles chronology Tornado (2012) Your Side of the Bed (2013) Sober (2013) Your Side of the Bed is a song recorded by American country music group Little Big Town. It was re...

An Eastern Orthodox archdiocese in Finland Orthodox Church of FinlandUspenski Cathedral in HelsinkiTypeNational churchClassificationEastern OrthodoxPolityEpiscopalPrimateLeo of Helsinki and all FinlandBishops5Priestsc. 140Dioceses3Parishes12Monasteries2LanguageFinnish, Swedish, Skolt Sami, Church Slavonic, GreekHeadquartersHelsinki, FinlandTerritoryFinlandPossessionsFinnish Orthodox Parish in SwedenIndependence1921(Autonomy granted from Moscow Patriarchate)1923(Autonomy granted from Ecumenica...

 

Questa voce sull'argomento atleti nigeriani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Blessing Ibrahim Nazionalità  Nigeria Atletica leggera Specialità Salti in estensione Record Lungo 6,17 m (2015) Triplo 13,82 m (2012) Carriera Nazionale 2010- Nigeria Palmarès Competizione Ori Argenti Bronzi Giochi panafricani 0 1 0 Campionati africani 0 0 1 Campionati africani juniores 1 0 1 Per maggior...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!