Hurwitz's automorphisms theorem

In mathematics, Hurwitz's automorphisms theorem bounds the order of the group of automorphisms, via orientation-preserving conformal mappings, of a compact Riemann surface of genus g > 1, stating that the number of such automorphisms cannot exceed 84(g − 1). A group for which the maximum is achieved is called a Hurwitz group, and the corresponding Riemann surface a Hurwitz surface. Because compact Riemann surfaces are synonymous with non-singular complex projective algebraic curves, a Hurwitz surface can also be called a Hurwitz curve.[1] The theorem is named after Adolf Hurwitz, who proved it in (Hurwitz 1893).

Hurwitz's bound also holds for algebraic curves over a field of characteristic 0, and over fields of positive characteristic p>0 for groups whose order is coprime to p, but can fail over fields of positive characteristic p>0 when p divides the group order. For example, the double cover of the projective line y2 = xpx branched at all points defined over the prime field has genus g=(p−1)/2 but is acted on by the group PGL2(p) of order p3p.

Interpretation in terms of hyperbolicity

One of the fundamental themes in differential geometry is a trichotomy between the Riemannian manifolds of positive, zero, and negative curvature K. It manifests itself in many diverse situations and on several levels. In the context of compact Riemann surfaces X, via the Riemann uniformization theorem, this can be seen as a distinction between the surfaces of different topologies:

While in the first two cases the surface X admits infinitely many conformal automorphisms (in fact, the conformal automorphism group is a complex Lie group of dimension three for a sphere and of dimension one for a torus), a hyperbolic Riemann surface only admits a discrete set of automorphisms. Hurwitz's theorem claims that in fact more is true: it provides a uniform bound on the order of the automorphism group as a function of the genus and characterizes those Riemann surfaces for which the bound is sharp.

Statement and proof

Theorem: Let be a smooth connected Riemann surface of genus . Then its automorphism group has size at most .

Proof: Assume for now that is finite (this will be proved at the end).

  • Consider the quotient map . Since acts by holomorphic functions, the quotient is locally of the form and the quotient is a smooth Riemann surface. The quotient map is a branched cover, and we will see below that the ramification points correspond to the orbits that have a non-trivial stabiliser. Let be the genus of .
  • By the Riemann-Hurwitz formula, where the sum is over the ramification points for the quotient map . The ramification index at is just the order of the stabiliser group, since where the number of pre-images of (the number of points in the orbit), and . By definition of ramification points, for all ramification indices.

Now call the righthand side and since we must have . Rearranging the equation we find:

  • If then , and
  • If , then and so that ,
  • If , then and
    • if then , so that
    • if then , so that ,
    • if then write . We may assume .
      • if then so that ,
      • if then
        • if then so that ,
        • if then so that .

In conclusion, .

To show that is finite, note that acts on the cohomology preserving the Hodge decomposition and the lattice .

  • In particular, its action on gives a homomorphism with discrete image .
  • In addition, the image preserves the natural non-degenerate Hermitian inner product on . In particular the image is contained in the unitary group which is compact. Thus the image is not just discrete, but finite.
  • It remains to prove that has finite kernel. In fact, we will prove is injective. Assume acts as the identity on . If is finite, then by the Lefschetz fixed-point theorem,

This is a contradiction, and so is infinite. Since is a closed complex sub variety of positive dimension and is a smooth connected curve (i.e. ), we must have . Thus is the identity, and we conclude that is injective and is finite. Q.E.D.

Corollary of the proof: A Riemann surface of genus has automorphisms if and only if is a branched cover with three ramification points, of indices 2,3 and 7.

The idea of another proof and construction of the Hurwitz surfaces

By the uniformization theorem, any hyperbolic surface X – i.e., the Gaussian curvature of X is equal to negative one at every point – is covered by the hyperbolic plane. The conformal mappings of the surface correspond to orientation-preserving automorphisms of the hyperbolic plane. By the Gauss–Bonnet theorem, the area of the surface is

A(X) = − 2π χ(X) = 4π(g − 1).

In order to make the automorphism group G of X as large as possible, we want the area of its fundamental domain D for this action to be as small as possible. If the fundamental domain is a triangle with the vertex angles π/p, π/q and π/r, defining a tiling of the hyperbolic plane, then p, q, and r are integers greater than one, and the area is

A(D) = π(1 − 1/p − 1/q − 1/r).

Thus we are asking for integers which make the expression

1 − 1/p − 1/q − 1/r

strictly positive and as small as possible. This minimal value is 1/42, and

1 − 1/2 − 1/3 − 1/7 = 1/42

gives a unique triple of such integers. This would indicate that the order |G| of the automorphism group is bounded by

A(X)/A(D)  ≤  168(g − 1).

However, a more delicate reasoning shows that this is an overestimate by the factor of two, because the group G can contain orientation-reversing transformations. For the orientation-preserving conformal automorphisms the bound is 84(g − 1).

Construction

Hurwitz groups and surfaces are constructed based on the tiling of the hyperbolic plane by the (2,3,7) Schwarz triangle.

To obtain an example of a Hurwitz group, let us start with a (2,3,7)-tiling of the hyperbolic plane. Its full symmetry group is the full (2,3,7) triangle group generated by the reflections across the sides of a single fundamental triangle with the angles π/2, π/3 and π/7. Since a reflection flips the triangle and changes the orientation, we can join the triangles in pairs and obtain an orientation-preserving tiling polygon. A Hurwitz surface is obtained by 'closing up' a part of this infinite tiling of the hyperbolic plane to a compact Riemann surface of genus g. This will necessarily involve exactly 84(g − 1) double triangle tiles.

The following two regular tilings have the desired symmetry group; the rotational group corresponds to rotation about an edge, a vertex, and a face, while the full symmetry group would also include a reflection. The polygons in the tiling are not fundamental domains – the tiling by (2,3,7) triangles refines both of these and is not regular.


order-3 heptagonal tiling

order-7 triangular tiling

Wythoff constructions yields further uniform tilings, yielding eight uniform tilings, including the two regular ones given here. These all descend to Hurwitz surfaces, yielding tilings of the surfaces (triangulation, tiling by heptagons, etc.).

From the arguments above it can be inferred that a Hurwitz group G is characterized by the property that it is a finite quotient of the group with two generators a and b and three relations

thus G is a finite group generated by two elements of orders two and three, whose product is of order seven. More precisely, any Hurwitz surface, that is, a hyperbolic surface that realizes the maximum order of the automorphism group for the surfaces of a given genus, can be obtained by the construction given. This is the last part of the theorem of Hurwitz.

Examples of Hurwitz groups and surfaces

The small cubicuboctahedron is a polyhedral immersion of the tiling of the Klein quartic by 56 triangles, meeting at 24 vertices.[2]

The smallest Hurwitz group is the projective special linear group PSL(2,7), of order 168, and the corresponding curve is the Klein quartic curve. This group is also isomorphic to PSL(3,2).

Next is the Macbeath curve, with automorphism group PSL(2,8) of order 504. Many more finite simple groups are Hurwitz groups; for instance all but 64 of the alternating groups are Hurwitz groups, the largest non-Hurwitz example being of degree 167. The smallest alternating group that is a Hurwitz group is A15.

Most projective special linear groups of large rank are Hurwitz groups, (Lucchini, Tamburini & Wilson 2000). For lower ranks, fewer such groups are Hurwitz. For np the order of p modulo 7, one has that PSL(2,q) is Hurwitz if and only if either q=7 or q = pnp. Indeed, PSL(3,q) is Hurwitz if and only if q = 2, PSL(4,q) is never Hurwitz, and PSL(5,q) is Hurwitz if and only if q = 74 or q = pnp, (Tamburini & Vsemirnov 2006).

Similarly, many groups of Lie type are Hurwitz. The finite classical groups of large rank are Hurwitz, (Lucchini & Tamburini 1999). The exceptional Lie groups of type G2 and the Ree groups of type 2G2 are nearly always Hurwitz, (Malle 1990). Other families of exceptional and twisted Lie groups of low rank are shown to be Hurwitz in (Malle 1995).

There are 12 sporadic groups that can be generated as Hurwitz groups: the Janko groups J1, J2 and J4, the Fischer groups Fi22 and Fi'24, the Rudvalis group, the Held group, the Thompson group, the Harada–Norton group, the third Conway group Co3, the Lyons group, and the Monster, (Wilson 2001).

Automorphism groups in low genus

The largest |Aut(X)| can get for a Riemann surface X of genus g is shown below, for 2≤g≤10, along with a surface X0 with |Aut(X0)| maximal.

genus g Largest possible |Aut(X)| X0 Aut(X0)
2 48 Bolza curve GL2(3)
3 168 (Hurwitz bound) Klein quartic PSL2(7)
4 120 Bring curve S5
5 192 Modular curve X(8) PSL2(Z/8Z)
6 150 Fermat curve F5 (C5 x C5):S3
7 504 (Hurwitz bound) Macbeath curve PSL2(8)
8 336
9 320
10 432
11 240

In this range, there only exists a Hurwitz curve in genus g=3 and g=7.

Generalizations

The concept of a Hurwitz surface can be generalized in several ways to a definition that has examples in all but a few genera. Perhaps the most natural is a "maximally symmetric" surface: One that cannot be continuously modified through equally symmetric surfaces to a surface whose symmetry properly contains that of the original surface. This is possible for all orientable compact genera (see above section "Automorphism groups in low genus").

See also

Notes

  1. ^ Technically speaking, there is an equivalence of categories between the category of compact Riemann surfaces with the orientation-preserving conformal maps and the category of non-singular complex projective algebraic curves with the algebraic morphisms.
  2. ^ (Richter) Note each face in the polyhedron consist of multiple faces in the tiling – two triangular faces constitute a square face and so forth, as per this explanatory image.

References

  • Hurwitz, A. (1893), "Über algebraische Gebilde mit Eindeutigen Transformationen in sich", Mathematische Annalen, 41 (3): 403–442, doi:10.1007/BF01443420, JFM 24.0380.02.
  • Lucchini, A.; Tamburini, M. C. (1999), "Classical groups of large rank as Hurwitz groups", Journal of Algebra, 219 (2): 531–546, doi:10.1006/jabr.1999.7911, ISSN 0021-8693, MR 1706821
  • Lucchini, A.; Tamburini, M. C.; Wilson, J. S. (2000), "Hurwitz groups of large rank", Journal of the London Mathematical Society, Second Series, 61 (1): 81–92, doi:10.1112/S0024610799008467, ISSN 0024-6107, MR 1745399
  • Malle, Gunter (1990), "Hurwitz groups and G2(q)", Canadian Mathematical Bulletin, 33 (3): 349–357, doi:10.4153/CMB-1990-059-8, ISSN 0008-4395, MR 1077110
  • Malle, Gunter (1995), "Small rank exceptional Hurwitz groups", Groups of Lie type and their geometries (Como, 1993), London Math. Soc. Lecture Note Ser., vol. 207, Cambridge University Press, pp. 173–183, MR 1320522
  • Tamburini, M. C.; Vsemirnov, M. (2006), "Irreducible (2,3,7)-subgroups of PGL(n,F) for n ≤ 7", Journal of Algebra, 300 (1): 339–362, doi:10.1016/j.jalgebra.2006.02.030, ISSN 0021-8693, MR 2228652
  • Wilson, R. A. (2001), "The Monster is a Hurwitz group", Journal of Group Theory, 4 (4): 367–374, doi:10.1515/jgth.2001.027, MR 1859175, archived from the original on 2012-03-05, retrieved 2015-09-04
  • Richter, David A., How to Make the Mathieu Group M24, archived from the original on 2010-01-16, retrieved 2010-04-15

Read other articles:

Línea 289 Madrid (Ciudad Lineal) Coslada (Hospital) Área abastecidaMunicipios Madrid y CosladaDescripciónTipo AutobúsSistema Interurbanos MadridZonas tarifarias OperaciónParadas 29 (Ida)28 (Vuelta)Primera expedición 6:30 (L-V) 8:45 (SDF) (Ida)5:50 (L-V) 8:00 (SDF) (Vuelta)Última expedición 22:20 (L-V I) 21:50 (L-V V) 19:15 (SDF) (Ida)21:30 (L-V I) 21:05 (L-V V) 18:30 (SDF) (Vuelta)ExplotaciónOperador AvanzaAutoridad CRTMEsquema Madrid (Ciudad Lineal) Hermanos García Noblejas Arcenta...

 

 

روك تقدميمعلومات عامةالبلد المملكة المتحدة — الولايات المتحدة — أوروبا النشأة والظهور 1967 أصول الأسلوب موسيقى الروك[1] تعديل - تعديل مصدري - تعديل ويكي بيانات فرقة بينك فلويد البريطانية خلال حفل موسيقي عام 1973 تعزف فيه ألبومها «ذا دارك سايد أوف ذا مون» الذي يعدّ أكثر ألبو

 

 

American basketball player and coach For the baseball player, see Bucky Williams. For the fictional character from Left Behind, see Cameron Buck Williams. For the Aboriginal Australian singer, see Harry and Wilga Williams. Buck WilliamsBuck Williams in 2006Personal informationBorn (1960-03-08) March 8, 1960 (age 63)Rocky Mount, North Carolina, U.S.Listed height6 ft 8 in (2.03 m)Listed weight215 lb (98 kg)Career informationHigh schoolRocky Mount(Rocky Mount, North...

Modelo atual de placa finlandesa. Modelo de placa usado exclusivamente nas ilhas Åland. As Placas de identificação de veículos na Finlândia seguem um sistema alfanumérico introduzido em 1972, formado por três letras e três dígitos separados por um travessão (por exemplo, ABC-123) e não indicam o lugar de procedência do veículo. Os caracteres são pretos sobre fundo branco, com as medidas da placa de 442 mm de largura por 118 mm de altura.[1] O formato desde 2001 é comum ao das P...

 

 

Geometri molekul tetrahedronContohCH4, MnO−4Kelompok titikTdBilangan sterik{{{Electron_direction}}}Bilangan koordinasi4Sudut ikatan≈109.5°μ (Polaritas)0 Struktur molekul tetrahedron atau tetrahedral memiliki satu atom sebagai pusat dan empat substituen yang tersusun dalam bentuk limas segitiga, atau tetrahedron (empat muka). Contoh molekul dengan struktur tetrahedral adalah metana (CH4). Atom karbon dalam molekul ini terikat dengan atom-atom hidrogen melalui empat pasang elektron ikatan...

 

 

2016年夏季奥林匹克运动会突尼斯代表團突尼斯国旗IOC編碼TUNNOC突尼西亞奧林匹克委員會網站www.cnot.org.tn(法文)2016年夏季奥林匹克运动会(里約熱內盧)2016年8月5日至8月21日運動員60參賽項目17个大项旗手开幕式:烏薩馬·邁盧利(游泳)[1]闭幕式:Oussama Oueslati(跆拳道)[2]獎牌榜排名第76 金牌 銀牌 銅牌 總計 0 0 3 3 历届奥林匹克运动会参赛记录(总结)夏季奥林

Стадіон Сокола-Батька Західний край стадіону був розташований приблизно там, де зараз міститься станція Сонячна дитячої залізниці в Стрийському парку Розташування Львів, Україна Координати 49°48′56″ пн. ш. 24°01′18″ сх. д. / 49.81583300002777293° пн. ш. 24.02194400002...

 

 

Система національних парків Словаччини складається з дев'яти парків. Велика Фатра Мала Фатра Муранська полонина Низькі Татри П'єніни Полонини Словацький Карст Словацький Рай Татри Розташування на карті Словаччини Природоохоронна система Національні парки є лише част...

 

 

Internet protocol used for relaying e-mails SMTP redirects here. For the email delivery company, see SMTP (company). For Short Message Transfer Protocol, see GSM 03.40. Internet protocol suite Application layer BGP DHCP (v6) DNS FTP HTTP (HTTP/3) HTTPS IMAP IRC LDAP MGCP MQTT NNTP NTP OSPF POP PTP ONC/RPC RTP RTSP RIP SIP SMTP SNMP SSH Telnet TLS/SSL XMPP more... Transport layer TCP UDP DCCP SCTP RSVP QUIC more... Internet layer IP v4 v6 ICMP (v6) NDP ECN IGMP IPsec more... Link layer AR...

George Shearing 1959 Sir George Shearing OBE (eigentlich George Albert Shearing; * 13. August 1919 in London, England; † 14. Februar 2011 in Manhattan, New York) war ein britisch-amerikanischer Jazzpianist und Komponist. Inhaltsverzeichnis 1 Leben und Wirken 2 Musik und Wirkung 3 Auszeichnungen 4 Diskographische Hinweise 5 Literatur 5.1 Biographie 5.2 Lexikalische Einträge 6 Weblinks 7 Einzelnachweise Leben und Wirken George Shearing, von Geburt an blind, begann im Alter von drei Jahren, K...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Pakande-Kandea adalah tradisi asli budaya Buton berupa pesta adat makan bersama yang bertujuan untuk menyambut tamu. Tradisi yang juga disebut dengan kande-kandea kabolosi ini merupakan sebuah permainan rakyat yang terikat adat serta memiliki norma ter...

 

 

Musik tingkilan Tingkilan merupakan salah satu jenis kesenian musik oleh masyarakat Kutai di Provinsi Kalimantan Timur, Indonesia.[1] Musik ini lahir seiring dengan masuknya Islam ke Kutai dan sedikit banyak memiliki kesamaan bunyi dengan kesenian rumpun Melayu lainnya.[2] Tingkilan lantas menyebar melalui proses akulturasi dengan kebudayaan setempat, membuat musik ini kini terbagi menjadi tiga jenis (Hulu Mahakam, Tengah, dan Pantai) yang memiliki karakternya masing-masing.&#...

Plano que muestra las estructuras de Tehuacán Tehuacán es un sitio arqueológico de la época precolombina, está ubicado en los municipios de San Vicente y Tecoluca en el departamento de San Vicente de la república de El Salvador.[1]​ El sitio arqueológico fue explorado en abril de 1892 por Darío González. Fue habitado aproximadamente desde el siglo VII, las evidencias arqueológicas muestran que Tehuacán tuvo intercambio comercial con Quelepa. Su época de auge lo alcanzó...

 

 

Angolan footballer In this Portuguese name, the first or maternal family name is Sebastião and the second or paternal family name is Luvumbo. Zito Luvumbo Luvombo with Cagliari in 2023Personal informationFull name Zito André Sebastião Luvumbo[1]Date of birth (2002-03-09) 9 March 2002 (age 21)Place of birth Luanda, AngolaHeight 1.71 m (5 ft 7 in)[2]Position(s) WingerTeam informationCurrent team CagliariNumber 77Senior career*Years Team Apps (Gls)2018...

 

 

Trump–Russia relations Business interactions Bayrock Group Business projects of Donald Trump in Russia Trump Tower Moscow Russian election interference 2016 US election leaks Associates' links with Russian officials and spies Cambridge Analytica Classified information disclosures Clinton emails Cyberwarfare by Russia Data seizure DCLeaks Democratic National Committee cyber attacks Democratic National Committee v. Russian Federation Dismissal of James Comey Facebook–Cambridge Analytica dat...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Urban Daydreams – news · newspapers · books · scholar · JSTOR (October 2015) 1989 studio album by David BenoitUrban DaydreamsStudio album by David BenoitReleasedApril 17, 1989[1]Recorded1989StudioSunset Sound (Hollywood)Capitol (Hollyw...

 

 

Mountain of Light beralih ke halaman ini. Untuk the diamond, lihat Koh-i-Noor. Jabal an-NurJabal an-Nur di Mekkah.Titik tertinggiKetinggian642 m (2.106 ft)GeografiJabal al-NourLocation of Jabal al-Nour in Saudi ArabiaLetakMekkah, Arab Saudi Jabal an-Nuur (disebut juga Jabal an-Nur atau Jabal Nur), atau diartikan dalam bahasa Arab جبل النور sebagai Gunung Cahaya, adalah sebuah gunung dekat kota Mekkah di Hejaz, Arab Saudi[1] Gunung ini menjadi salah satu tempat yang p...

 

 

У Вікіпедії є статті про інших людей із прізвищем Ємець. Владислав Ємець Особисті дані Повне ім'я Владислав Євгенійович Ємець Народження 9 вересня 1997(1997-09-09)[1] (26 років)   Харків, Україна Зріст 180 см Вага 70 кг Громадянство  Україна Позиція півзахисник і захис...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ruy Pérez Ponce de León – news · newspapers · books · scholar · JSTOR (July 2012) (Learn how and when to remove this template message)This article includes a list of references, related reading, or external links, but its sources remain unclear because it lac...

 

 

Flag carrier of the United Kingdom British Airways IATA ICAO Callsign BA BAW; SHT SPEEDBIRD; SHUTTLE Founded25 August 1919; 104 years ago (1919-08-25)(as Aircraft Transport and Travel Limited)31 March 1974; 49 years ago (1974-03-31)(as British Airways)AOC #441HubsLondon–GatwickLondon–HeathrowFrequent-flyer programExecutive Club/AviosAllianceOneworldSubsidiariesBA CityflyerBA EuroFlyer[1]Fleet size257Destinations206[2]Parent companyI...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!