Gaussian orbital

In computational chemistry and molecular physics, Gaussian orbitals (also known as Gaussian type orbitals, GTOs or Gaussians) are functions used as atomic orbitals in the LCAO method for the representation of electron orbitals in molecules and numerous properties that depend on these.[1]

Rationale

The use of Gaussian orbitals in electronic structure theory (instead of the more physical Slater-type orbitals) was first proposed by Boys[2] in 1950. The principal reason for the use of Gaussian basis functions in molecular quantum chemical calculations is the 'Gaussian Product Theorem', which guarantees that the product of two GTOs centered on two different atoms is a finite sum of Gaussians centered on a point along the axis connecting them. In this manner, four-center integrals can be reduced to finite sums of two-center integrals, and in a next step to finite sums of one-center integrals. The speedup by 4-5 orders of magnitude compared to Slater orbitals outweighs the extra cost entailed by the larger number of basis functions generally required in a Gaussian calculation.

For reasons of convenience, many quantum chemistry programs work in a basis of Cartesian Gaussians even when spherical Gaussians are requested, as integral evaluation is much easier in the Cartesian basis, and the spherical functions can be simply expressed using the Cartesian functions.[3] [4]

Mathematical form

The Gaussian basis functions obey the usual radial-angular decomposition

,

where is a spherical harmonic, and are the angular momentum and its component, and are spherical coordinates.

While for Slater orbitals the radial part is

being a normalization constant, for Gaussian primitives the radial part is

where is the normalization constant corresponding to the Gaussian.

The normalization condition which determines or is

which in general does not impose orthogonality in .

Because an individual primitive Gaussian function gives a rather poor description for the electronic wave function near the nucleus, Gaussian basis sets are almost always contracted:

,

where is the contraction coefficient for the primitive with exponent . The coefficients are given with respect to normalized primitives, because coefficients for unnormalized primitives would differ by many orders of magnitude. The exponents are reported in atomic units. There is a large library of published Gaussian basis sets optimized for a variety of criteria available at the Basis Set Exchange portal.

Cartesian coordinates

In Cartesian coordinates, Gaussian-type orbitals can be written in terms of exponential factors in the , , and directions as well as an exponential factor controlling the width of the orbital. The expression for a Cartesian Gaussian-type orbital, with the appropriate normalization coefficient is

In the above expression, , , and must be integers. If , then the orbital has spherical symmetry and is considered an s-type GTO. If , the GTO possesses axial symmetry along one axis and is considered a p-type GTO. When , there are six possible GTOs that may be constructed; this is one more than the five canonical d orbital functions for a given angular quantum number. To address this, a linear combination of two d-type GTOs can be used to reproduce a canonical d function. Similarly, there exist 10 f-type GTOs, but only 7 canonical f orbital functions; this pattern continues for higher angular quantum numbers.[5]

Molecular integrals

Taketa et al. (1966) presented the necessary mathematical equations for obtaining matrix elements in the Gaussian basis.[6] Since then much work has been done to speed up the evaluation of these integrals which are the slowest part of many quantum chemical calculations. Živković and Maksić (1968) suggested using Hermite Gaussian functions,[7] as this simplifies the equations. McMurchie and Davidson (1978) introduced recursion relations,[8] which greatly reduces the amount of calculations. Pople and Hehre (1978) developed a local coordinate method.[9] Obara and Saika introduced efficient recursion relations in 1985,[10] which was followed by the development of other important recurrence relations. Gill and Pople (1990) introduced a 'PRISM' algorithm which allowed efficient use of 20 different calculation paths.[11]

The POLYATOM System

The POLYATOM System[12] was the first package for ab initio calculations using Gaussian orbitals that was applied to a wide variety of molecules.[13] It was developed in Slater's Solid State and Molecular Theory Group (SSMTG) at MIT using the resources of the Cooperative Computing Laboratory. The mathematical infrastructure and operational software were developed by Imre Csizmadia,[14] Malcolm Harrison,[15] Jules Moskowitz[16] and Brian Sutcliffe.[17]

See also

References

  1. ^ Gill, Peter M.W. (1994). "Molecular integrals Over Gaussian Basis Functions" (PDF). Advances in Quantum Chemistry. 25: 141–205. Bibcode:1994AdQC...25..141G. doi:10.1016/S0065-3276(08)60019-2. ISBN 9780120348251. Retrieved 17 June 2011.
  2. ^ Boys, S. F. (1950). "Electronic Wave Functions. I. A General Method of Calculation for the Stationary States of Any Molecular System". Proc. R. Soc. Lond. A. 200 (1063): 542–554. Bibcode:1950RSPSA.200..542B. doi:10.1098/rspa.1950.0036. JSTOR 98423. S2CID 122709395.
  3. ^ Schlegel, H.; Frisch, M. (1990). "Transformation between Cartesian and pure spherical harmonic Gaussians". International Journal of Quantum Chemistry. 54 (2): 83–87. doi:10.1002/qua.560540202. S2CID 94417974.
  4. ^ Mathar, Richard J. (2002). "Mutual Conversion of Three Flavors of Gaussian Type Orbitals". International Journal of Quantum Chemistry. 90 (1): 227–243. arXiv:physics/9907051. Bibcode:2002IJQC...90..227M. doi:10.1002/qua.10085. S2CID 119100125.
  5. ^ Cramer, Christopher J. (2004). Essentials of computational chemistry : theories and models (2nd ed.). Chichester, West Sussex, England: Wiley. p. 167. ISBN 9780470091821.
  6. ^ Taketa, Hiroshi; Huzinaga, Sigeru; O-ohata, Kiyosi (1966). "Gaussian-Expansion Methods for Molecular Integrals". Journal of the Physical Society of Japan. 21 (11): 2313–2324. Bibcode:1966JPSJ...21.2313T. doi:10.1143/JPSJ.21.2313.
  7. ^ Živković, T.; Maksić, Z. B. (1968). "Explicit Formulas for Molecular Integrals over Hermite-Gaussian Functions". Journal of Chemical Physics. 49 (7): 3083–3087. Bibcode:1968JChPh..49.3083Z. doi:10.1063/1.1670551.
  8. ^ McMurchie, Larry E.; Davidson, Ernest R. (1978). "One- and two-electron integrals over Cartesian Gaussian functions". Journal of Computational Physics. 26 (2): 218–31. Bibcode:1978JCoPh..26..218M. doi:10.1016/0021-9991(78)90092-X.
  9. ^ Pople, J. A.; Hehre, W. J. (1978). "Computation of electron repulsion integrals involving contracted Gaussian basis functions". J. Comput. Phys. 27 (2): 161–168. Bibcode:1978JCoPh..27..161P. doi:10.1016/0021-9991(78)90001-3.
  10. ^ Obara, S.; Saika, A. (1986). "Efficient recursive computation of molecular integrals over Cartesian Gaussian functions". J. Chem. Phys. 84 (7): 3963–74. Bibcode:1986JChPh..84.3963O. doi:10.1063/1.450106.
  11. ^ Gill, Peter M. W.; Pople, John A. (December 1991). "The Prism Algorithm for Two-Electron Integrals" (PDF). International Journal of Quantum Chemistry. 40 (6): 753–772. doi:10.1002/qua.560400605. Retrieved 17 June 2011.
  12. ^ Csizmadia, I.G.; Harrison, M.C.; Moskowitz, J.W.; Sutcliffe, B.T. (1966). "Nonempirical LCAO-MO-SCF-CI calculations on organic molecules with gaussian-type functions. Introductory review and mathematical formalism". Theoretica Chimica Acta. 6 (3): 191. doi:10.1007/BF02394698. S2CID 198176437.
  13. ^ A.C. Wahl, Chemistry by computer, Scientific American, pages 54-70, April, 1970.
  14. ^ Imre Csizmadia, Professor Emeritus of Chemistry, University of Toronto, in Reviews in Computational Chemistry, vol.15, p.248
  15. ^ Malcolm C. Harrison, Professor of Computer Science, New York University
  16. ^ Jules W. Moskowitz, Professor Emeritus of Chemistry, New York University
  17. ^ Brian T. Sutcliffe, Professor of Chemistry, York University

Read other articles:

This is a list of equipment used by the Latvian Land Forces. Personal equipment A Latvian Army soldier uses hand signals to communicate with his comrades during exercise Saber Junction 15. Note the LATPAT camouflage pattern and BEAR-II vest The equipment of the Latvian Land Forces troops includes: LatPat, Multi-LatPat and WoodLatPat (Latvian digital camouflage uniform). Norwegian BEAR-II load bearing armor system Kevlar helmets Night vision devices Infantry weapons Model Image Origin Variant ...

 

بنيامين كينيكوت معلومات شخصية الميلاد 4 أبريل 1718[1]  ديفون،  وتوتنس  الوفاة 18 سبتمبر 1783 (65 سنة) [1]  كورنوال،  وأكسفورد  مواطنة مملكة بريطانيا العظمى المملكة المتحدة  عضو في الجمعية الملكية  الحياة العملية المدرسة الأم كلية وادهام  المهنة كاهن أ...

 

ЛашамбрLachambre   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Форбак-Буле-Мозель Кантон Сент-Авольд- Код INSEE 57373 Поштові індекси 57730 Координати 49°04′56″ пн. ш. 6°44′43″ сх. д.H G O Висота 250 - 340 м.н.р.м. Площа 7,86 км² Населення 926 (01-2020[1]) Густота 102...

Hurrikan Agnes Kategorie-1-Hurrikan (SSHWS) Hurrikan Agnes am 18. Juni 1972 im Golf von MexikoHurrikan Agnes am 18. Juni 1972 im Golf von Mexiko Entstehung 14. Juni 1972 Auflösung 6. Juli 1972 Spitzenwind-geschwindigkeit 85 mph (140 km/h) (1 Minute anhaltend) Niedrigster Luftdruck 977 mbar (hPa; 28,9 inHg) Tote mind. 128 Sachschäden 3,1 Milliarden US-$ (1972) BetroffeneGebiete Yucatán, Kuba, Florida, Georgia, North Carolina, Virginia, Maryland, Penns...

 

أبو زكرياء يحيى الوطاسي معلومات شخصية تاريخ الوفاة سنة 1448  مواطنة الدولة المرينية  عائلة الوطاسيون  مناصب حاكم   تولى المنصب حتى1420  الاختصاص سلا  الحياة العملية المهنة سياسي  اللغات الأمازيغية  تعديل مصدري - تعديل   أبو زكرياء يحيى بن زيان الوطاسي[1&...

 

妙手仁心Healing Hands类型時裝醫務编剧鄧特希、梁敏華、彭 蔚、吳婉雯编导黃偉森、李樹芬、林志華、鍾國強助理编导岑耀國、黃詠文、李世勇、伍詠詩、王麗文主演吳啟華、林保怡、蔡少芬、陳慧珊、張家輝、蘇永康、馬浚偉、陳芷菁语言粵語集数32主题曲Healing Hands(Main Theme)作曲黃尚偉片尾曲不想獨自快樂作曲黃尚偉作词梁芷珊演唱蘇永康插曲曾經幾許作曲Alex San填詞杜

بوابة جغرافيا عنت  مصرالتاريخمصر القديمة (المملكة المصرية القديمة - المملكة المصرية الوسطى - المملكة المصرية الحديثة) · العهد الفارسي · العهد البطلمي · العهد الروماني · العهد المسيحي ·  الفتح الإسلامي · العهد الإسلامي · العهد المملوكي · العهد العث

 

Deportivo Petare Basisdaten Name Deportivo Petare Fútbol Club Sitz Caracas Gründung 1948 Präsident Mario Hernández Website deportivopetarefc.com Erste Fußballmannschaft Cheftrainer Daniel De Oliveira Spielstätte Estadio Olímpico Plätze 24.900 Liga Primera División 2014/15 16. Platz Heim Auswärts Deportivo Petare Fútbol Club (bis 2010 Deportivo Italia Fútbol Club) ist ein venezolanischer Fußballverein aus Caracas. Der Verein wurde 1948 gegründet und trägt seine Heimspiele im Est...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: École McTavish Public High School – news · newspapers · books · scholar · JSTOR (January 2013) High school in Fort McMurray, Alberta, CanadaÉcole McTavish Public High SchoolAddress352 Parsons Creek DriveFort McMurray, Alberta, T9K 0C8CanadaCoordinat...

Deutschland EM-Rekordspielerin Birgit Prinz (20) EM-Rekordtorschützin Inka Grings (10) Rang 1 Ausrichter 1989, 2001 Bilanz 43 EM-Spiele 33 Siege 6[1] Unentschieden4 Niederlagen93:23 Tore Statistik Erstes EM-SpielDeutschland Bundesrepublik BR Deutschland 1:1 n. V., 4:3 i. E. Italien ItalienSiegen (BRD); 28. Juni 1989 Höchster EM-SiegDeutschland Deutschland 5:0 Russland RusslandErfurt (DEU); 27. Juni 2001 Höchste EM-NiederlageDeutschland Deutschland 1:3 Dänemark DanemarkCe...

 

2019 Philippine television series BihagTitle cardAlso known asThe Silent Thief[1]GenreCrime dramaCreated bySuzette DoctoleroWritten by Suzette Doctolero Maria Zita S. Garganera Jason John Lim John Roque Directed byNeal del RosarioCreative directorAloy AdlawanStarringMax CollinsTheme music composerAnn Margaret FigueroaOpening themeWalang Ganti by Maricris GarciaCountry of originPhilippinesOriginal languageTagalogNo. of episodes98 (list of episodes)ProductionExecutive producers Darling ...

 

1998 video gameCentre Court TennisDeveloper(s)Hudson SoftPublisher(s)JP: Hudson SoftEU: Gaga Interactive MediaPlatform(s)Nintendo 64ReleaseJP: October 9, 1998PAL: 1999Genre(s)SportsMode(s)Single-player, multiplayer Centre Court Tennis is a tennis game for the Nintendo 64 released in 1999 in Europe. It was released under the name Let's Smash (Let's スマッシュ) in Japan in 1998. Famitsu rated it 27/40.[1] X64 Magazine rated it 80% and Consoles + rated it 89%.[2] 64Power/Big...

Peta Kabupaten Bombana di Sulawesi Tenggara Berikut adalah daftar kecamatan dan kelurahan di Kabupaten Bombana, Provinsi Sulawesi Tenggara, Indonesia. Kabupaten Bombana terdiri dari 22 kecamatan, 22 kelurahan dan 121 desa dengan luas wilayah 3.001,00 km² dan jumlah penduduk sebesar 136.582 jiwa (2017) dengan sebaran penduduk 45 jiwa/km².[1][2] Kabupaten Bombana sebelumnya menjadi bagian dari wilayah pemerintahan Kabupaten Buton, sebelum akhirnya pada 2003 wilayah ini resmi b...

 

Cette page concerne l'année 2017 du calendrier grégorien. Pour l'année 2017 av. J.-C., voir 2017 av. J.-C. Pour le nombre 2017, voir 2017 (nombre). Chronologies Données clés 2014 2015 2016  2017  2018 2019 2020Décennies :1980 1990 2000  2010  2020 2030 2040Siècles :XIXe XXe  XXIe  XXIIe XXIIIeMillénaires :Ier IIe  IIIe  Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, C...

 

1968 murder of a police detective in Singapore D. MunusamyD. Munusamy, the 24-year-old police detective who was stabbed to deathBornMunusamy Naidu s/o Doresamy1944SingaporeDied5 February 1968 (aged 23)Bukit Timah, SingaporeCause of deathMurderedNationality SingaporeanOther namesD. MunisamyMonisamy s/o Doresamy[1]OccupationPolice officerEmployerSingapore Police Force (1963 – 1968)Known forMurder victimTitleDetectiveChildrenNone On 5 February 1968, a 24-year-old police ...

Pour les articles homonymes, voir Tariq Ibn Ziyad (homonymie) et Ibn Ziad (homonymie). Tariq ibn Ziyad Miniature médiévale représentant Tariq ibn Ziyad, réalisée vers 1302. Surnom Tariq le Borgne Naissance viie siècleMaghreb Décès v. 720Damas Origine Berbère Allégeance Omeyyades Commandement Chef d'armée Conflits Conquête musulmane de la péninsule Ibérique Faits d'armes Bataille du Guadalete Autres fonctions Gouverneur de Tanger (710-720)Gouverneur d'al-Andalus (711-712) mo...

 

Country house in Norfolk, England, private home of King Charles III Sandringham HouseThe most comfortable house in England[1]TypeCountry houseLocationNear Sandringham, Norfolk, EnglandCoordinates52°49′47″N 0°30′50″E / 52.82972°N 0.51389°E / 52.82972; 0.51389Built1870–1892Built forAlbert Edward, Prince of WalesArchitectA. J. HumbertRobert William EdisArchitectural style(s)JacobethanOwnerCharles III (personally) National Register of Historic Parks a...

 

Wife of Johann Wilhelm Palatine Elector Anna Maria Luisa de' MediciPortrait by Jan Frans van DouvenElectress PalatineTenure5 June 1691 – 8 June 1716Born(1667-08-11)11 August 1667Palazzo Pitti, Florence, TuscanyDied18 February 1743(1743-02-18) (aged 75)Palazzo Pitti, Florence, TuscanyBurialBasilica of San Lorenzo, Florence 43°46′30″N 11°15′13″E / 43.774991°N 11.253659°E / 43.774991; 11.253659SpouseJohann Wilhelm, Elector PalatineHouseMediciFatherC...

Dit is een lijst van grietmannen van de voormalige Nederlandse grietenij Oostdongeradeel in de provincie Friesland tot de invoering van de gemeentewet in 1851. Ambtsperiode Naam grietman Leven Bijzonderheden 1517 - 1539 Poppe van Mellema 1539 - 1551 Worp van Ropta †1551 1552 - 1570 Rinthie van Aytta 1509-1570 Broer van Wigle van Aytta van Zwichem, tevens Grietman van Schiermonnikoog. 1570 - 1581 Doede van Sierksma †>1610 Voorafgaand burgemeester van Leeuwarden. Zwager van zijn voorgang...

 

Інститут вищої освіти Національної академії педагогічних наук України Основні дані Засновано 7 червня 1999 Приналежність Національна академія педагогічних наук України Контакт Ключові особи Калашнікова Світлана Андріївна (директор) Драч Ірина Іванівна (перший заступни...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!