Galileo's law of odd numbers

In classical mechanics and kinematics, Galileo's law of odd numbers states that the distance covered by a falling object in successive equal time intervals is linearly proportional to the odd numbers. That is, if a body falling from rest covers a certain distance during an arbitrary time interval, it will cover 3, 5, 7, etc. times that distance in the subsequent time intervals of the same length. This mathematical model is accurate if the body is not subject to any forces besides uniform gravity (for example, it is falling in a vacuum in a uniform gravitational field). This law was established by Galileo Galilei who was the first to make quantitative studies of free fall.

Explanation

Derivation of Galileo's law of odd numbers

Using a speed-time graph

The graph in the figure is a plot of speed versus time. Distance covered is the area under the line. Each time interval is coloured differently. The distance covered in the second and subsequent intervals is the area of its trapezium, which can be subdivided into triangles as shown. As each triangle has the same base and height, they have the same area as the triangle in the first interval. It can be observed that every interval has two more triangles than the previous one. Since the first interval has one triangle, this leads to the odd numbers.[1]

Using the sum of first n odd numbers

From the equation for uniform linear acceleration, the distance covered for initial speed constant acceleration (acceleration due to gravity without air resistance), and time elapsed it follows that the distance is proportional to (in symbols, ), thus the distance from the starting point are consecutive squares for integer values of time elapsed. The middle figure in the diagram is a visual proof that the sum of the first odd numbers is [2] In equations:

1 = 1 = 12
1 + 3 = 4 = 22
1 + 3 + 5 = 9 = 32
1 + 3 + 5 + 7 = 16 = 42
1 + 3 + 5 + 7 + 9 = 25 = 52

That the pattern continues forever can also be proven algebraically:

To clarify this proof, since the th odd positive integer is if denotes the sum of the first odd integers then so that Substituting and gives, respectively, the formulas where the first formula expresses the sum entirely in terms of the odd integer while the second expresses it entirely in terms of which is 's ordinal position in the list of odd integers

See also

  • Equations of motion – Equations that describe the behavior of a physical system
  • Square numbers – Product of an integer with itself

Notes and references


Read other articles:

Estonian politician, geographer, and encyclopedist Hardo AasmäeHardo Aasmäe in 1991Mayor of TallinnIn office1990–1992Preceded byHarri LumiSucceeded byJaak Tamm Personal detailsBorn(1951-02-11)11 February 1951Rannamõisa, Martna Parish, Lääne County, EstoniaDied29 December 2014(2014-12-29) (aged 63)Tallinn, EstoniaPolitical partyEstonian People's FrontAlma materUniversity of Tartu, Leningrad State UniversityProfessionRadio Producer, Geographer Hardo Aasmäe (11 February 1951 – 29 ...

 

 

ATN1 Ідентифікатори Символи ATN1, B37, D12S755E, DRPLA, HRS, NOD, atrophin 1, CHEDDA Зовнішні ІД OMIM: 607462 MGI: 104725 HomoloGene: 1461 GeneCards: ATN1 Пов'язані генетичні захворювання dentatorubral-pallidoluysian atrophy[1] Онтологія гена Молекулярна функція • GO:0001948, GO:0016582 protein binding• GO:0001106 transcription corepressor activity• protein domain specific binding• DNA b...

 

 

Бразильсько-південноафриканські відносини Бразилія Південно-Африканська Республіка Лула да Сілва, Манмохан Сінгх, Табо Мбекі Бразильсько-південноафриканські відносини - двосторонні дипломатичні відносини між Бразилією та ПАР. Огляд У 1918 Бразилія відкрила консульство

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Janeiro de 2021) Forever The Sickest Kids Forever the Sickest KidsForever the Sickest Kids - Viver concerto en ano 2011 Informação geral Origem Dallas, Texas País Estados Unidos Gênero(s) Pop punk[1][2]power pop[2] Período em atividad...

 

 

Gillette Ciudad Vista de Gillete GilletteLocalización de Gillette en Wyoming Estado de Wyoming en EE. UU.Coordenadas 44°16′58″N 105°30′19″O / 44.282777777778, -105.50527777778Entidad Ciudad • País  Estados Unidos • Estado  Wyoming • Condado CampbellAlcalde Tom MurphySuperficie   • Total 34.7 km² • Tierra 34.6 km² • Agua 0.01 km²Altitud   • Media 1388 m s. n. m.Población (1 de abril de 202...

 

 

Cinema of China List of Chinese films pre-1930 1930s 1940s 1950s 1960s 1970s 1980s 1990s 1990 1991 1992 1993 19941995 1996 1997 1998 1999 2000s 2000 2001 2002 2003 20042005 2006 2007 2008 2009 2010s 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020s 2020 2021 2022 Chinese Animationvte A list of mainland Chinese films released in 1999: Title Director Cast Genre Notes A Beautiful New World Shi Runjiu Jiang Wu Comedy Agreed Not to Separate Fu Jingsheng Fei Ming Pu Cunxin Xu Qing Drama Crash...

Sandalwood(Kannada) cinema 1930s 1940s 1950s 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19941995 1996 1997 1998 1999 2000s 2000 2001 2002 2003 20042005 2006 2007 2008 2009 2010s 2010 2011 2012 2013 20142015 2016 2017 2018 2019 2020s 2020 2021 2022 2023 2024 vte The following is a list of films produced in the Kannada film industry in India in 2001...

 

 

Doni Doni pada tahun 2011Informasi pribadiNama lengkap Doniéber Alexander Marangon[1]Tanggal lahir 22 Oktober 1979 (umur 44)Tempat lahir Jundiaí, São Paulo, BrasilTinggi 194 m (636 ft 6 in)Posisi bermain Penjaga gawangKarier junior1999–2001 Botafogo-SPKarier senior*Tahun Tim Tampil (Gol)2001 Botafogo-SP 0 (0)2001–2003 Corinthians 59 (0)2004 Santos 0 (0)2004–2005 Cruzeiro 6 (0)2005 Juventude 20 (0)2005–2011 Roma 147 (0)2011–2013 Liverpool 4 (0)2013 Bota...

 

 

A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (April 2021) (Learn how and when to remove this template message) Georges BoisotGeorges Boisot by Benjamin Bolomey (circa 1801).Vaud State CouncilorIn officeMay 7, 1830 – February 14, 1845 Personal detailsBorn14 September 1774Mézières, VaudDied19 Dec...

Ministry of the federal government of Pakistan Not to be confused with Ministry of Defence (Pakistan). Ministry of Defence ProductionAgency overviewFormed2 September 2004 (2 September 2004); 15 years agoPrecedingDefense Production DivisionJurisdictionGovernment of PakistanHeadquartersPakistan Secretariat-II in Rawalpindi, PunjabMinister responsibleAnwar Ali Haider, Minister of Defence ProductionAgency executiveLt-Gen. Humayun Aziz[1], Secretary of Defence ProductionWebsitewww.mod...

 

 

Hoysala King Veera Ballala IIHoysala KingReignc. 1173 – c. 1220 CEPredecessorNarasimha ISuccessorVira Narasimha IISpouseCholamahadevi,KetaladeviIssueVira Narasimha II, SomaladeviDynastyHoysala Hoysala KingsNripa Kama II1026–1047Vinayaditya1047–1098Ereyanga1098–1102Veera Ballala I1102–1108Vishnuvardhana1108–1152Narasimha I1152–1173)Veera Ballala II1173–1220Vira Narasimha II1220–1235Vira Someshwara1235–1263Narasimha III1263–1292Veera Ballala III1292–1343...

 

 

This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (October 2018) Village in Punjab, IndiaChinna VeeranVillageCoordinates: 31°44′06.89″N 75°22′44.39″E / 31.7352472°N 75.3789972°E / 31.7352472; 75.3789972CountryIndiaStatePunjabDistrictGurdaspurTehsilBatalaRegionMajhaGovernment • TypePanchayat raj • BodyGram panchayatPopulation&#...

Ashburn Alley, Citizens Bank Park, Philadelphia, named after Baseball Hall of Famer Richie Ashburn Ashburn Alley is the open concourse behind center field at Citizens Bank Park, home of the Philadelphia Phillies. It is named after Hall of Famer Richie Ashburn, Phillies center fielder from 1948 to 1959, and was also a long time broadcaster for the Phillies from 1963 until his death in September 1997. Ashburn Alley spans from the left field gate to The Yard kids area, and features a street-fair...

 

 

Piala Raja Spanyol 1921Negara SpanyolJumlah peserta8Juara bertahanBarcelonaJuaraAthletic Bilbao(gelar ke-8)Tempat keduaAtlético MadridJumlah pertandingan12Jumlah gol50 (4.17 per pertandingan)← 1920 1922 → Piala Raja Spanyol 1921 adalah edisi ke-19 dari penyelenggaraan Piala Raja Spanyol, turnamen sepak bola di Spanyol dengan sistem piala. Edisi ini dimenangkan oleh Athletic Bilbao setelah mengalahkan Atlético Madrid pada pertandingan final dengan skor 4–1. Final Artikel utama: Fi...

 

 

  提示:此条目的主题不是计算机科学中的时空权衡。 此條目已列出參考文獻,但因為沒有文內引註而使來源仍然不明。 (2017年9月11日)请加上合适的文內引註来改善这篇条目。 以空間換取時間是對日抗戰期間國民政府軍事委員會委員長蔣中正的主要策略。 背景 抗戰初期,因為國民政府瞭解本國之物資、資源、兵力、軍火、武器、民心、軍隊士氣等都不如日本,由當...

This article needs a plot summary. Please add one in your own words. (August 2021) (Learn how and when to remove this template message) 2018 filmJourney to a Mother's RoomTheatrical release posterSpanishViaje al cuarto de una madre Directed byCelia Rico ClavellinoWritten byCelia Rico ClavellinoProduced byJosep AmorósIbon CormenzanaStarringLola DueñasAnna CastilloCinematographySantiago RacajEdited byFernando FrancoMusic byPaco OrtegaProductioncompaniesAmorós ProduccionesArcadia Motion P...

 

 

Development of mathematics in South Asia Mathematics in India redirects here. For the 2009 monograph by Kim Plofker, see Mathematics in India (book). Indian mathematics emerged in the Indian subcontinent[1] from 1200 BCE[2] until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta, Bhaskara II, and Varāhamihira. The decimal number system in use today[3]...

 

 

American economist This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is an autobiography or has been extensively edited by the subject or by someone connected to the subject. It may need editing to conform to Wikipedia's neutral point of view policy. There may be relevant discussion on the talk page. (May 2019) (Learn how and when to remove this template message) This biography...

Největší německý vánoční strom v roce 2008 před frankfurtskou radnicí Vánoční stromek, také vánoční strom či vánoční stromeček, je ozdobený strom, obvykle stálezelený jehličnan jako smrk, borovice nebo jedle, který je jedním ze symbolů Vánoc. Tradice zdobení stromku pochází z území Baltu a Německa a původně byl ozdoben jablky, ořechy a jinými potravinami. V 18. století se přidala tradice zdobení svíčkami. V domácnostech se zdobí malé stromky, kt...

 

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 機回し線 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2019年12月) 機回し線の末端 機回し線(きまわしせん)とは...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!