Four-velocity

In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime[nb 1] that represents the relativistic counterpart of velocity, which is a three-dimensional vector in space.

Physical events correspond to mathematical points in time and space, the set of all of them together forming a mathematical model of physical four-dimensional spacetime. The history of an object traces a curve in spacetime, called its world line. If the object has mass, so that its speed is necessarily less than the speed of light, the world line may be parametrized by the proper time of the object. The four-velocity is the rate of change of four-position with respect to the proper time along the curve. The velocity, in contrast, is the rate of change of the position in (three-dimensional) space of the object, as seen by an observer, with respect to the observer's time.

The value of the magnitude of an object's four-velocity, i.e. the quantity obtained by applying the metric tensor g to the four-velocity U, that is U2 = UU = gμνUνUμ, is always equal to ±c2, where c is the speed of light. Whether the plus or minus sign applies depends on the choice of metric signature. For an object at rest its four-velocity is parallel to the direction of the time coordinate with U0 = c. A four-velocity is thus the normalized future-directed timelike tangent vector to a world line, and is a contravariant vector. Though it is a vector, addition of two four-velocities does not yield a four-velocity: the space of four-velocities is not itself a vector space.[nb 2]

Velocity

The path of an object in three-dimensional space (in an inertial frame) may be expressed in terms of three spatial coordinate functions xi(t) of time t, where i is an index which takes values 1, 2, 3.

The three coordinates form the 3d position vector, written as a column vector

The components of the velocity (tangent to the curve) at any point on the world line are

Each component is simply written

Theory of relativity

In Einstein's theory of relativity, the path of an object moving relative to a particular frame of reference is defined by four coordinate functions xμ(τ), where μ is a spacetime index which takes the value 0 for the timelike component, and 1, 2, 3 for the spacelike coordinates. The zeroth component is defined as the time coordinate multiplied by c,

Each function depends on one parameter τ called its proper time. As a column vector,

Time dilation

From time dilation, the differentials in coordinate time t and proper time τ are related by where the Lorentz factor, is a function of the Euclidean norm u of the 3d velocity vector :

Definition of the four-velocity

The four-velocity is the tangent four-vector of a timelike world line. The four-velocity at any point of world line is defined as: where is the four-position and is the proper time.[1]

The four-velocity defined here using the proper time of an object does not exist for world lines for massless objects such as photons travelling at the speed of light; nor is it defined for tachyonic world lines, where the tangent vector is spacelike.

Components of the four-velocity

The relationship between the time t and the coordinate time x0 is defined by

Taking the derivative of this with respect to the proper time τ, we find the Uμ velocity component for μ = 0:

and for the other 3 components to proper time we get the Uμ velocity component for μ = 1, 2, 3: where we have used the chain rule and the relationships

Thus, we find for the four-velocity :

Written in standard four-vector notation this is: where is the temporal component and is the spatial component.

In terms of the synchronized clocks and rulers associated with a particular slice of flat spacetime, the three spacelike components of four-velocity define a traveling object's proper velocity i.e. the rate at which distance is covered in the reference map frame per unit proper time elapsed on clocks traveling with the object.

Unlike most other four-vectors, the four-velocity has only 3 independent components instead of 4. The factor is a function of the three-dimensional velocity .

When certain Lorentz scalars are multiplied by the four-velocity, one then gets new physical four-vectors that have 4 independent components.

For example:

  • Four-momentum: where is the rest mass
  • Four-current density: where is the charge density

Effectively, the factor combines with the Lorentz scalar term to make the 4th independent component and

Magnitude

Using the differential of the four-position in the rest frame, the magnitude of the four-velocity can be obtained by the Minkowski metric with signature (−, +, +, +): in short, the magnitude of the four-velocity for any object is always a fixed constant:

In a moving frame, the same norm is: so that:

which reduces to the definition of the Lorentz factor.

See also

Remarks

  1. ^ Technically, the four-vector should be thought of as residing in the tangent space of a point in spacetime, spacetime itself being modeled as a smooth manifold. This distinction is significant in general relativity.
  2. ^ The set of four-velocities is a subset of the tangent space (which is a vector space) at an event. The label four-vector stems from the behavior under Lorentz transformations, namely under which particular representation they transform.

References

  • Einstein, Albert (1920). Relativity: The Special and General Theory. Translated by Robert W. Lawson. New York: Original: Henry Holt, 1920; Reprinted: Prometheus Books, 1995.
  • Rindler, Wolfgang (1991). Introduction to Special Relativity (2nd). Oxford: Oxford University Press. ISBN 0-19-853952-5.
  1. ^ McComb, W. D. (1999). Dynamics and relativity. Oxford [etc.]: Oxford University Press. p. 230. ISBN 0-19-850112-9.

Read other articles:

Microscopisch beeld van met een kleurstof bewerkt keratine Keratine is een eiwit dat als een structuurelement voorkomt bij dieren en is een klassiek voorbeeld van een vezeleiwit. Keratine is een taai, onoplosbaar eiwit dat voorkomt in onder andere de epidermis (buitenlaag) van de huid bij mens en vele dieren. De buitenste cellaag bevat keratine waardoor de huid taai en waterafstotend is. Bij eeltvorming op bijvoorbeeld handen en voeten neemt het aantal cellen met keratine sterk toe. Keratine ...

 

Dieser Artikel behandelt den Stadtteil und Stadtbezirk von Braunschweig. Zum ähnlich oder gleichnamigen Adelsgeschlecht siehe Broizem. Broitzem Stadt Braunschweig Wappen von Broitzem Koordinaten: 52° 14′ N, 10° 29′ O52.23444444444410.48083333333383Koordinaten: 52° 14′ 4″ N, 10° 28′ 51″ O Höhe: 83 m Einwohner: 5790 (31. Dez. 2020)[1] Eingemeindung: 1. März 1974 Postleitzahl: 38122 Vorwahl: 0531 Kar...

 

For the Opening Day starting pitchers prior to 1968, see List of Philadelphia and Kansas City Athletics Opening Day starting pitchers. The Oakland Athletics are a Major League Baseball (MLB) team based in Oakland, California. They play in the American League West division. The club was founded in Philadelphia in 1901, moved to Kansas City, Missouri in 1955 and relocated to Oakland in 1968.[1] The first game of the new baseball season for a team is played on Opening Day, and being name...

Адам Рапацький (24.12.1909, Львів -10.10.1970, Варшава) — польський політик, економіст і дипломат. Богдан Рапацький - український спортсмен, Універсальний кулачний бій Ю. А. Кострова. Рапацький — термін, який має кілька значень. Ця сторінка значень містить посилання на статті про ко...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2021)   لمعانٍ أخرى، طالع الكوم الأخضر (توضيح). الكوم الأخضر  -  قرية مصرية -  جانب من قرية الكوم الأخضر تقسيم إداري البلد  مصر المحافظة المنوفية ال...

 

British thriller series This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (August 2023) (Learn how and when to remove this template message) This article needs additional citations for verification. P...

The Annie Larsen affair was a gun-running plot in the United States during World War I.[1] The plot, involving India's Ghadar Party, the Irish Republican Brotherhood and the German Foreign office, was a part of the larger so-called Hindu–German Conspiracy,[2] and it was the prime offence cited in the 1917 Hindu–German Conspiracy Trial, described at the time as the longest and most expensive trial in American legal history.[3] Background Main article: Hindu–German...

 

Village in Ganja, AzerbaijanKrasnoye SeloVillageKrasnoye SeloCoordinates: 40°38′36″N 46°23′35″E / 40.64333°N 46.39306°E / 40.64333; 46.39306Country AzerbaijanCityGanjaTime zoneUTC+4 (AZT) • Summer (DST)UTC+5 (AZT) Krasnoye Selo is a village in Ganja, Azerbaijan. It is suspected that this village has undergone a name change or no longer exists, as no Azerbaijani website mentions it under this name. References Krasnoye Selo, Azerbaijan at GEO...

 

جزء من سلسلة مقالات سياسة البحرينالبحرين الدستور الدستور حقوق الإنسان حقوق المرأة السياسية الملكية الملك حمد بن عيسى بن سلمان آل خليفة الحكومة رئيس الوزراء خليفة بن سلمان آل خليفة وزارة الخارجية وزارة الداخلية وزارة العدل والشؤون الإسلامية والأوقاف وزارة المالية والاقت...

1957 film by Herman Hoffman This article is about the 1957 film. For the 2014 film, see The Invisible Boy (2014 film). For other uses, see Invisible Boy. The Invisible BoyFilm poster by Reynold BrownDirected byHerman HoffmanWritten byEdmund Cooper (story)Cyril HumeProduced byNicholas NayfackStarringRichard EyerPhilip AbbottDiane BrewsterHarold J. StoneCinematographyHarold E. WellmanEdited byJohn FaureMusic byLes BaxterDistributed byMetro-Goldwyn MayerRelease date October 1957 (1957-...

 

Szwajcaria Ten artykuł jest częścią serii:Ustrój i politykaSzwajcarii Ustrój polityczny Ustrój polityczny Szwajcarii Konstytucja Konstytucja Szwajcarii Władza ustawodawcza Zgromadzenie Federalne Rada Narodu Rada Kantonów Władza wykonawcza Prezydent Rada Związkowa Kanclerz federalny Szwajcarii Władza sądownicza Wymiar sprawiedliwości Federalny Sąd Najwyższy Federalny Trybunał Karny Federalny Sąd Administracyjny Prokurator Generalny Kontrola państwowa Kontrola państwowa Fina...

 

2016 mobile strategy video game 2016 video gameGirls' FrontlineDeveloper(s)MICA TeamPublisher(s)CHN: Dark WinterTWN: Longcheng TianxiaKOR: X.D. GlobalEN: Darkwinter SoftwareJPN: Sunborn JapanProducer(s)Yuzhong (羽中)EngineUnityReleaseCHN: 20 May 2016TWN: 18 January 2017HKG: 30 June 2017KOR: 30 June 2017EN: 8 May 2018JPN: 1 August 2018Genre(s)Strategy role-playing gameMode(s)Single-player Girls' Frontlineドールズフロントライン(Dōruzu Furontorain) MangaGirls' Frontline: The Song o...

1953 film by Seymour Friedman Flame of CalcuttaTheatrical release posterDirected bySeymour FriedmanWritten bySol ShorRobert E. KentProduced bySam KatzmanStarringDenise DarcelPatric KnowlesPaul CavanaghLeonard PennNarrated byFred F. SearsCinematographyRay CoryHenry FreulichEdited byJerome ThomsMusic byClifford VaughanMischa BakaleinikoffProductioncompanyEsskay PicturesDistributed byColumbia PicturesRelease dateJuly 20, 1953Running time69 minutesCountryUnited StatesLanguageEnglish Flame of Calc...

 

2018 video gameBasingstokeDeveloper(s)Puppy GamesPublisher(s)Puppy GamesEngineUnityPlatform(s)Microsoft Windows, Linux, macOSRelease27 April 2018Genre(s)Roguelike, stealthMode(s)Single-player  Basingstoke is a roguelike and stealth video game developed and published by Puppy Games. It was released on Microsoft Windows, Linux, and macOS on 27 April 2018.[1][2][3] Gameplay The player must escape an invasion of deadly aliens on foot, using their wits and cunning.[...

 

Serbian poet Vasko PopaВаско ПопаPortrait of Popa by photographer Stevan Kragujević, 1990Born(1922-06-29)29 June 1922Grebenac, Yugoslavia(now Serbia)Died5 June 1991(1991-06-05) (aged 68)Belgrade, SR Serbia, YugoslaviaOccupation(s)poet, writer, editor, translator Vasile Vasko Popa (Serbian Cyrillic: Васко Попа; 29 June 1922 – 5 January 1991) was a Serbian poet. Biography Васко Попа Popa was born in the village of Grebenac (Romanian: Grebenaț), Yugoslavia (pr...

Otot jantungOtot jantungOtot jantung pada anjing, perbesaran 400XRincianPengidentifikasiBahasa Latintextus muscularis striatus cardiacusMeSHD009206TA98A12.1.06.001TA23950FMA9462Daftar istilah anatomi[sunting di Wikidata] Gambar 3D yang menunjukkan miokardium (myocardium), yang disusun oleh otot jantung, sebagai salah satu lapisan dinding jantung. Otot jantung atau adalah otot tidak sadar yang membentuk miokardium, yaitu dinding jantung di antara perikardium dan endokardium. Otot jantung a...

 

Charron (Charron, Girardot et Voigt, CGV) Основание 1901 Упразднена 1930 Расположение  Франция Отрасль Автомобилестроение Продукция Легковые автомобили, грузовые автомобили, бронеавтомобили  Медиафайлы на Викискладе Шаррон, Жирардо э Вуа (фр. Charron, Girardot et Voigt; с 1907 года — Charron) — ф...

 

BangkokกรุงเทพมหานครKrung Thep Mahanakhon Capital de Tailandia BanderaEscudo BangkokLocalización de Bangkok en TailandiaCoordenadas 13°45′00″N 100°31′00″E / 13.75, 100.51666666667Idioma oficial TailandésEntidad Capital de Tailandia • País  Tailandia • Región Tailandia Central • Provincia Área administrativa especialAlcalde Chadchart SittipuntEventos históricos   • Fundación 21 de abril de 1782Supe...

Динамика роста интуристов в Японии с 2003 по 2017 Туризм в Японии — отрасль экономики Японии. В 2019-ом году Япония привлекла 31,88 млн. международных туристов[1]. В Японии 21 объект Всемирного наследия, включая замок Химэдзи, исторические памятники Киото и Нары. В докладе о кон...

 

18th century coffee house in Covent Garden, London This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (September 2016) (Learn how and when to remove this template message) Detail from Hogarth's Four Times of the Day, showing a fight breaking out in Tom King's coffee house Tom King's Coffee House (later known as Moll King's Co...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!