Filament propagation

In nonlinear optics, filament propagation is propagation of a beam of light through a medium without diffraction. This is possible because the Kerr effect causes an index of refraction change in the medium, resulting in self-focusing of the beam.[1]

Filamentary damage tracks in glass caused by laser pulses were first observed by Michael Hercher in 1964.[2] Filament propagation of laser pulses in the atmosphere was observed in 1994 by Gérard Mourou and his team at University of Michigan. The balance between the self-focusing refraction and self-attenuating diffraction by ionization and rarefaction of a laser beam of terawatt intensities, created by chirped pulse amplification, in the atmosphere creates "filaments" which act as waveguides for the beam thus preventing divergence. Competing theories, that the observed filament was actually an illusion created by an axiconic (bessel) or moving focus instead of a "waveguided" concentration of the optical energy, were put to rest by workers at Los Alamos National Laboratory in 1997.[3] Though sophisticated models have been developed to describe the filamentation process, a model proposed by Akozbek et al.[4] provides a semi-analytical and easy to understand solution for the propagation of strong laser pulses in the air.

Filament propagation in a semiconductor medium can also be observed in large aperture vertical cavity surface emitting lasers.

Femtosecond laser filamentation in gaseous media

Self-focusing

A laser beam traversing a medium can modulate the refractive index of medium as[5]

where , and are linear refractive index, second order refractive index and intensity of propagating laser field respectively. Self-focusing occurs when the phase shift due to Kerr effect compensates for the phase shift because of Gaussian beam divergence. Phase change due to diffraction for a Gaussian beam after traversing a length of is

and phase change because of Kerr effect is

.

where , (Rayleigh range) and is the waist of Gaussian beam. For self-focusing to happen the one have to satisfy the condition of terms be equal in magnitude for both Kerr and diffraction phases. Hence

.

On the other hand, we know that area of a Gaussian beam at its waist is . Therefore[6]

.

Note

Self-focusing needs a laser peak power higher than the critical power (order of gigawatts in air[7]), however, for infrared (IR) nanosecond pulses with peak powers higher than the critical power self-focusing is not possible. Multiphoton ionization, inverse Bremsstrahlung and electron avalanche ionization are three major results of gas and laser interaction. The later two processes are collisional-type interactions and take time to accomplish (picosecond to nanosecond). A nanosecond pulse is long enough to develop the air breakdown before the power reaches the GW order required for self-focusing. Breakdown of gas produces plasma that has absorbing and reflecting effect so self-focusing is prohibited.[7]

Re-focusing during the propagation of a focused short laser pulse

An interesting phenomenon related to the filament propagation is the refocusing of focused laser pulses after the geometrical focus.[8][9] Gaussian Beam propagation predicts an increasing beam width bidirectionally away from the geometric focus. However, in the situation of laser filamentation, the beam will quickly recollapse. This divergence and refocusing will continue indefinitely.

In photo-reactive systems

Filament formation and propagation may also be observed in photopolymer systems. Such systems display a Kerr-like optical nonlinearity via photoreactive-based increases in the refractive index.[10] The filaments form as a result of the self-trapping of individual beams, or modulation instability of a wide-area light profile. Filament propagation has been observed in several photo-polymerizable systems, including organo-siloxane,[11] acrylics,[12] epoxy and copolymers with epoxies,[13] and polymer blends.[14][15] The locations of filament formation and propagation may be controlled by modulating the spatial profile of the input light field. Such photo-reactive systems are able to produce filaments from spatially and temporally incoherent light, because the slow reaction responds to the time-average intensity of the optical field, whereby femto-second fluctuations wash out.[11] This is similar to photo-refractive media with non-instantaneous responses, which enable filament propagation with incoherent or partially incoherent light.[16]

Potential applications

The filaments, having made a plasma, turn the narrowband laser pulse into a broadband pulse having a wholly new set of applications. An interesting aspect of the filamentation induced plasma is the limited density of the electrons, a process which prevents the optical breakdown.[17] This effect provides an excellent source for spectroscopy of high pressure with low level of continuum and also smaller line broadening.[18][clarification needed] Another potential application is the LIDAR-monitoring of air.[19]

Flat panel dicing using short laser pulses is an important application due to the fact that as the glass substrates become thinner it becomes more difficult to improve the process yield using conventional diamond blade dicing techniques. Using short pulses dicing speeds of over 400 mm/s has been successfully demonstrated on non-alkali glass and borosilicate glass, using a 50 kHz, 5W high-power femtosecond laser. The working principle developed by Kamata et al.[20] is the following. The short pulse laser beam having a wavelength to which the work is transparent is directed to the front surface of the work toward the back surface and focused. A filament in the light beam traveling direction from the beam waist is formed by the auto-focusing action due to the laser beam propagation in the work is formed. The substance in the filament is decomposed by the laser beam and can be discharged from the back surface, and a cavity is formed in the channel. While forming the cavity, the laser beam is scanned, a machined surface is formed, and thereafter the work can be cut with a weak bending stress.[citation needed]

In July 2014, researchers at the University of Maryland reported using filamenting femtosecond laser pulses in a square arrangement to produce a density gradient in air which acted as an optical waveguide lasting on the order of several milliseconds. Initial testing demonstrated a signal gain of 50% over an unguided signal at a distance of about one meter.[21] A field application was demonstrated in 2021, where kHz-repetition-rate 1030-nm terawatt Yb:YAG laser, installed in the vicinity of the 124-m-tall Säntis telecommunications tower was used to guide lightning strikes towards the tower's Franklin rod, opening up the possibility of future laser lightning rods.[22]

References

  1. ^ Rashidian Vaziri, M R (2013). "Describing the propagation of intense laser pulses in nonlinear Kerr media using the ducting model". Laser Physics. 23 (10): 105401. Bibcode:2013LaPhy..23j5401R. doi:10.1088/1054-660X/23/10/105401. S2CID 250912159.
  2. ^ Hercher, M. (1964). "Laser-induced damage in transparent media". Journal of the Optical Society of America. 54: 563.
  3. ^ Xhao, X.M.; Jones, R.J.; Strauss, C.E.M.; Funk, D.J.; Roberts, J.P.; Taylor, A.J. (1997). "Control of femtosecond pulse filament formation in air through variation of the initial chirp of the pulse". CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics. Vol. 11. IEEE. pp. 377–8. doi:10.1109/CLEO.1997.603294. ISBN 0-7803-4125-2. S2CID 120016673.
  4. ^ Aközbek, N.; Bowden, C.M.; Talebpour, A.; Chin, S.L. (2000). "Femtosecond pulse propagation in air: Variational analysis". Phys. Rev. E. 61 (4): 4540–9. Bibcode:2000PhRvE..61.4540A. doi:10.1103/PhysRevE.61.4540. PMID 11088254.
  5. ^ Boyd, Robert (2008). Nonlinear optics (3rd ed.). Academic press. ISBN 978-0-12-369470-6.
  6. ^ Diels, Jean-Claude; Rudolph, Wolfgang (2006). Ultrashort laser pulse phenomena (2nd ed.). ISBN 978-0-12-215493-5.
  7. ^ a b Chin, S.L.; Wang, T.J.; Marceau, C. (2012). "Advances in intense femtosecond laser filamentation in air". Laser Physics. 22 (1): 1–53. Bibcode:2012LaPhy..22....1C. doi:10.1134/S1054660X11190054. S2CID 12993181.
  8. ^ Mlejnek, M.; Wright, E.M.; Moloney, J.V. (1998). "Dynamic spatial replenishment of femtosecond pulses propagating in air". Optics Letters. 23 (5): 382–4. Bibcode:1998OptL...23..382M. doi:10.1364/OL.23.000382. PMID 18084519.
  9. ^ Talebpour, A.; Petit, S.; Chin, S.L. (1999). "Re-focusing during the propagation of a focused femtosecond Ti: Sapphire laser pulse in air". Optics Communications. 171 (4–6): 285–290. Bibcode:1999OptCo.171..285T. doi:10.1016/S0030-4018(99)00498-8.
  10. ^ Kewitsch, Anthony S.; Yariv, Amnon (1996-01-01). "Self-focusing and self-trapping of optical beams upon photopolymerization" (PDF). Optics Letters. 21 (1): 24–6. Bibcode:1996OptL...21...24K. doi:10.1364/OL.21.000024. PMID 19865292.
  11. ^ a b Burgess, Ian B.; Shimmell, Whitney E.; Saravanamuttu, Kalaichelvi (2007). "Spontaneous Pattern Formation Due to Modulation Instability of Incoherent White Light in a Photopolymerizable Medium". Journal of the American Chemical Society. 129 (15): 4738–46. doi:10.1021/ja068967b. PMID 17378567.
  12. ^ Biria, Saeid; Malley, Philip P. A.; Kahan, Tara F.; Hosein, Ian D. (2016-03-03). "Tunable Nonlinear Optical Pattern Formation and Microstructure in Cross-Linking Acrylate Systems during Free-Radical Polymerization". The Journal of Physical Chemistry C. 120 (8): 4517–28. doi:10.1021/acs.jpcc.5b11377. ISSN 1932-7447.
  13. ^ Basker, Dinesh K.; Brook, Michael A.; Saravanamuttu, Kalaichelvi (2015-09-03). "Spontaneous Emergence of Nonlinear Light Waves and Self-Inscribed Waveguide Microstructure during the Cationic Polymerization of Epoxides". The Journal of Physical Chemistry C. 119 (35): 20606–17. doi:10.1021/acs.jpcc.5b07117. ISSN 1932-7447.
  14. ^ Biria, Saeid; Malley, Phillip P. A.; Kahan, Tara F.; Hosein, Ian D. (2016-11-15). "Optical Autocatalysis Establishes Novel Spatial Dynamics in Phase Separation of Polymer Blends during Photocuring". ACS Macro Letters. 5 (11): 1237–41. doi:10.1021/acsmacrolett.6b00659. PMID 35614732.
  15. ^ Biria, Saeid; Hosein, Ian D. (2017-05-09). "Control of Morphology in Polymer Blends through Light Self-Trapping: An in Situ Study of Structure Evolution, Reaction Kinetics, and Phase Separation". Macromolecules. 50 (9): 3617–26. Bibcode:2017MaMol..50.3617B. doi:10.1021/acs.macromol.7b00484. ISSN 0024-9297.
  16. ^ Trillo, Stefano (2001). Spatial Solitons. Springer Series in Optical Sciences. Springer. ISBN 978-3-540-41653-1. Archived from the original on 2017-12-21.
  17. ^ Talebpour, A.; Abdel-Fattah, M.; Chin, S.L. (2000). "Focusing limits of intense ultrafast laser pulses in a high pressure gas: road to new spectroscopic source". Optics Communications. 183 (5–6): 479–484. Bibcode:2000OptCo.183..479T. doi:10.1016/S0030-4018(00)00903-2.
  18. ^ Talebpour, A.; Abdel-Fattah, M.; Bandrauk, A.D.; Chin, S.L. (2001). "Spectroscopy of the gases interacting with intense femtosecond laser pulses". Laser Physics. 11 (1): 68–76.
  19. ^ Wöste, Ludger; Frey, Steffen; Wolf, Jean-Pierre (2006). "LIDAR-Monitoring of the Air with Femtosecond Plasma Channels". Advances in Atomic, Molecular, and Optical Physics. 53: 413–441. Bibcode:2006AAMOP..53..413W. doi:10.1016/S1049-250X(06)53011-3. ISBN 978-0-12-003853-4.
  20. ^ JP WO2008126742A1, Kamata, M.; Sumyoshi, T. & Tsujikaula, S. et al., "Laser machining method, laser cutting method, and method for dividing structure having multilayer board", published 2008 
  21. ^ "Creating optical cables out of thin air". (e) Science News. 22 July 2014. Retrieved 4 September 2023.
  22. ^ Houard, Aurélien; Walch, Pierre; Produit, Thomas; et al. (16 January 2023). "Laser-guided lightning". Nature Photonics. 17 (3): 231–235. arXiv:2207.03769. Bibcode:2023NaPho..17..231H. doi:10.1038/s41566-022-01139-z. PMID 36909208.

[1]

  1. ^ Chin, S. L.; Wang, T. -J.; Marceau, C.; Wu, J.; Liu, J. S.; Kosareva, O.; Panov, N.; Chen, Y. P.; Daigle, J. -F.; Yuan, S.; Azarm, A.; Liu, W. W.; Seideman, T.; Zeng, H. P.; Richardson, M.; Li, R.; Xu, Z. Z. (2012). "Advances in intense femtosecond laser filamentation in air". Laser Physics. 22: 1–53. Bibcode:2012LaPhy..22....1C. doi:10.1134/S1054660X11190054. S2CID 12993181.

Read other articles:

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: T. V. Rathnam – news · newspapers · books · scholar · JSTOR (November 2017) (Learn how and when to remove this template message) T. V. RathnamT. V. Rathnam in late 1940sBackground informationBirth nameTenkasi Vallinayagam RathnamBorn1930OriginTenkasi, Madras Pr...

 

بيني فيلدشتاين (بالإنجليزية: Beanie Feldstein)‏    معلومات شخصية الميلاد 28 يونيو 1993 (30 سنة)[1]  لوس أنجلوس  مواطنة الولايات المتحدة  إخوة وأخوات جونا هيل  الحياة العملية المدرسة الأم جامعة ويسليان  المهنة ممثلة،  وممثلة تلفزيونية،  وممثلة أفلام  اللغة ا...

 

Place in GreeceDelta ΔέλταView of the port in ChalastraDeltaLocation within the region Coordinates: 40°40′N 22°48′E / 40.667°N 22.800°E / 40.667; 22.800CountryGreeceAdministrative regionCentral MacedoniaRegional unitThessalonikiArea • Municipality311.09 km2 (120.11 sq mi)Population (2011)[1] • Municipality45,839 • Municipality density150/km2 (380/sq mi)Time zoneUTC+2 (EET) • S...

Gulab SinghRaja JammuBerkuasa16 Juni 1822—16 Maret 1846[1]PendahuluKishore SinghMaharaja Jammu dan KashmirBerkuasa16 Maret 1846—20 Februari 1856[2]PenerusRanbir SinghWazir Kemaharajaan SikhMasa jabatan31 Januari 1846 – 9 Maret 1846PendahuluLal SinghKelahiran(1792-10-18)18 Oktober 1792JammuKematian30 Juni 1857(1857-06-30) (umur 64)WangsaDinasti DograNama lengkapGulab SinghAyahMian Kishore SinghIstriNihal KourAnakSohan SinghUdam SinghRanbir SinghAgamaHindu Gulab Singh...

 

  「沙特」和「沙乌地」均重定向至此。关于台湾译为“沙特”的法国哲学家,请见「让-保罗·萨特」。关于沙特其他意思,请见「沙特 (消歧义)」。 沙烏地阿拉伯王國المملكة العربية السعودية‎ Al-Mamlakah al-ʿArabīyah as-Saʿūdīyah 國旗 國徽 格言:لا إله إلا الله، محمد رسول الله‎(清真言) Lā ʾilāha ʾillā Llāh, Muḥammadur rasūlu Llāh「萬物非...

 

NASA Global Hawk 872 (NASA 872) Northrop Grumman (sebelumnya Ryan Aeronautical) RQ-4 global Hawk (dikenal sebagai Tier II + selama pengembangan) adalah kendaraan udara nirawak (UAV) pengintai (reconnaissance aircraft) sayap rendah (low wing) yang digunakan oleh Angkatan Udara Amerika Serikat dan Angkatan Laut dan Angkatan Udara Jerman sebagai pesawat pengintai . Deskripsi Global Hawk adalah pesawat tanpa awak yang terbesar dan tercanggih di dunia saat ini. RQ-4 Global Hawk adalah pesawat tanp...

 Nota: Este artigo é sobre o serviço ferroviário entre Portugal e Espanha. Para o ferry-boat, veja Lusitânia Expresso. Lusitânia Expresso Estação de Lisboa - Santa ApolóniaEstação de Lisboa - Santa Apolónia Legenda Lisboa-Santa Apolónia ⇄ Val. de Alcántara(mud. de loco.) Cáceres Madrid-Chamartín O Lusitânia Expresso, conhecido como Lusitania Express em Espanhol, foi um serviço ferroviário que ligou, entre 1943[1] e 1995, as localidades de Lisboa, em Portugal, e Ma...

 

Type of neural network which utilizes recursion Not to be confused with recurrent neural network. A recursive neural network is a kind of deep neural network created by applying the same set of weights recursively over a structured input, to produce a structured prediction over variable-size input structures, or a scalar prediction on it, by traversing a given structure in topological order. Recursive neural networks, sometimes abbreviated as RvNNs, have been successful, for instance, in lear...

 

Rupture in the surface of Io Galileo color mosaic of the volcano Prometheus and its eruption plumes. Prometheus Patera is the kidney-shaped dark region at upper right; the magma source vent is situated in the narrow neck directly below it. From the latter, the western flow field stretches to the left, with most of the SO2 plumes being erupted from the flow margins at the left end.[1] Prometheus is an active volcano on Jupiter's moon Io. It is located on Io's hemisphere facing away fro...

2006 novel by Stephen Graham Jones Demon Theory First Edition CoverAuthorStephen Graham JonesCover artistJacket design by Dorothy Carico SmithCountryUnited StatesLanguageEnglishPublisherMacAdam/CagePublication dateApril 27, 2006Media typePrint (hardback & paperback)Pages439 pp (first edition, paperback)ISBN978-1-59692-216-7 (first edition, paperback)OCLC62878706Preceded byBleed Into Me Followed byThe Long Trial of Nolan Dugatti  Demon Theory is a novel writte...

 

Portrait of Bonifacius Amerbach by Hans Holbein the Younger Portrait of Bonifacius AmerbachArtistHans Holbein the YoungerYear1519[1]Mediummixed technique on pine panel[1]Dimensions29.9 cm × 28.3 cm (11.8 in × 11.1 in)[1]LocationKunstmuseum Basel, BaselAccessionInv. 314Websitekunstmuseumbasel.ch The Portrait of Bonifacius Amerbach is a painting by the German master of the Renaissance Hans Holbein the Younger. It is deposited i...

 

日本の政治 政治制度 民主制 議院内閣制 象徴天皇制 単一国家 法制度 法治国家 日本国憲法 日本の法律 国民(主権者) 選挙 国政選挙(小選挙区比例代表並立制) 衆議院議員総選挙 参議院議員通常選挙 地方選挙 都道府県議会議員選挙 市町村議会議員選挙 特別区議会議員選挙 都道府県知事選挙 市町村長選挙 特別区長選挙 統一地方選挙 再選挙 補欠選挙 増員選挙 政党...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Alicia Gali adalah seorang wanita Australia yang dipenjara selama delapan bulan di Fujairah, Uni Emirat Arab pada tahun 2008.[1] Dia dituduh melakukan hubungan seksual terlarang di bawah hukum UEA setelah melaporkan ke polisi bahwa dia dibius d...

 

Military district of Russia For the Swedish counterpart, see Eastern Military District (Sweden). Eastern Military DistrictВосточный военный округEmblem of the Eastern Military DistrictFounded21 October 2010Country RussiaTypeMilitary districtPart of Russian Armed ForcesHeadquartersUlitsa Serysheva 15, KhabarovskDecorationsOrder of the Red BannerOrder of LeninOrder of SuvorovWebsiteOfficial websiteCommandersCurrentcommanderAndrey Kuzmenko.[1]InsigniaFlagMi...

 

Suburb of Sydney, New South Wales, AustraliaBelfieldSydney, New South WalesBelfield Hotel MapPopulation6,322 (2016 census)[1]Postcode(s)2191Elevation27 m (89 ft)Location12.3 km (8 mi) west of Sydney CBDLGA(s) City of Canterbury-Bankstown Municipality of StrathfieldState electorate(s) Canterbury StrathfieldFederal division(s)Watson Suburbs around Belfield: Strathfield South Strathfield South Enfield Greenacre Belfield Croydon Park Lakemba Belmore Campsie B...

Member of the Cabinet of the United Kingdom For the Spanish minister, see Secretary of State for Defence (Spain). United Kingdom Secretary of State for DefenceRoyal Arms of His Majesty's GovernmentFlag of the Secretary of State for DefenceIncumbentGrant Shappssince 31 August 2023Ministry of DefenceStyleDefence Secretary(informal)The Right Honourable(within the UK and Commonwealth)TypeMinister of the CrownStatusSecretary of StateMember of Cabinet Privy Council National Security Council De...

 

Coppa del Mondo di bob 1998/99 Vincitori Bob a due uomini Christoph Langen Bob a due donne Françoise Burdet Bob a quattro uomini Christoph Langen Combinata uomini Christoph Langen Dati manifestazione Tappe 7 (uomini)8 (donne) Gare individuali 14 (maschili)8 (femminili) 1997/98 1999/00 La Coppa del Mondo di bob 1998/99, organizzata dalla FIBT, è iniziata a Calgary, in Canada, il 13 novembre 1998 per gli uomini e il 5 dicembre 1998 a Park City, negli Stati Uniti d'America, per le donne ed è ...

 

ロッテホールディングス > 銀座コージーコーナー この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 銀座コージーコーナー – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ&#...

Den här artikeln har skapats av Lsjbot, ett program (en robot) för automatisk redigering. (2015-12)Artikeln kan innehålla fakta- eller språkfel, eller ett märkligt urval av fakta, källor eller bilder. Mallen kan avlägsnas efter en kontroll av innehållet (vidare information) Sandanski (Сандански) Sveti Vratj Ort Land  Bulgarien Region Blagoevgrad Kommun Obsjtina Sandanski Höjdläge 246 m ö.h. Koordinater 41°34′00″N 23°17′00″Ö / 41.5...

 

Species of bird Sulawesi hornbill male female Conservation status Vulnerable  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Bucerotiformes Family: Bucerotidae Genus: Rhabdotorrhinus Species: R. exarhatus Binomial name Rhabdotorrhinus exarhatus(Temminck, 1823) Synonyms Penelopides exarhatus Female at San Diego Zoo The Sulawesi hornbill (Rhabdotorrhinus exarhatus), also known as the Sulawesi tarictic hornbill, T...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!