The most common side effects include venous pain on injection and skeletal muscle movements.[6]
Medical uses
Sedation and anesthesia
In emergency settings, etomidate can be used as a sedative hypnotic agent. It is used for conscious sedation[7][8] and as a part of a rapid sequence induction to induce anaesthesia.[9][10] It is used as an anaesthetic agent since it has a rapid onset of action and a safe cardiovascular risk profile, and therefore is less likely to cause a significant drop in blood pressure than other induction agents.[11][12] In addition, etomidate is often used because of its easy dosing profile, limited suppression of ventilation, lack of histamine liberation and protection from myocardial and cerebral ischemia.[10] Thus, etomidate is a good induction agent for people who are hemodynamically unstable.[9] Etomidate also has interesting characteristics for people with traumatic brain injury because it is one of the only anesthetic agents able to decrease intracranial pressure and maintain a normal arterial pressure.[5][13][14][15][16]
In those with sepsis, one dose of the medication does not appear to affect the risk of death.[17]
Speech and memory test
Another use for etomidate is to determine speech lateralization in people prior to performing lobectomies to remove epileptogenic centres in the brain. This is called the etomidate speech and memory test, or eSAM, and is used at the Montreal Neurological Institute.[18][19] However, only retrospective cohort studies support the use and safety of etomidate for this test.[20]
The U.S. state of Florida used the drug in a death penalty procedure when Mark James Asay, 53, was executed on August 24, 2017. He became the first person in the U.S. to be executed with etomidate as one of the drugs. Etomidate replaces midazolam as the sedative. Drug companies have made it harder to buy midazolam for executions. The etomidate was followed by rocuronium bromide, a paralytic, and finally, potassium acetate in place of the commonly used potassium chloride injection to stop the heart. Potassium acetate was first used for this purpose inadvertently in a 2015 execution in Oklahoma.[24]
Adverse effects
Etomidate suppresses corticosteroid synthesis in the adrenal cortex by reversibly inhibiting 11β-hydroxylase, an enzyme important in adrenal steroid production; it leads to primary adrenal suppression.[25][26] Using a continuous etomidate infusion for sedation of critically ill trauma patients in intensive care units has been associated with increased mortality due to adrenal suppression.[27] Continuous intravenous administration of etomidate leads to adrenocortical dysfunction. The mortality of patients exposed to a continuous infusion of etomidate for more than 5 days increased from 25% to 44%, mainly due to infectious causes such as pneumonia.[27]
Because of etomidate-induced adrenal suppression, its use for patients with sepsis is controversial. Cortisol levels have been reported to be suppressed up to 72 hours after a single bolus of etomidate in this population at risk for adrenal insufficiency.[10] For this reason, many authors have suggested that etomidate should never be used for critically ill patients with septic shock[28][29][30] because it could increase mortality.[30][31] However, other authors continue to defend etomidate's use for septic patients because of etomidate's safe hemodynamic profile and lack of clear evidence of harm.[13][32] A study by Jabre et al. showed that a single dose of etomidate used for Rapid Sequence Induction prior to endrotracheal intubation has no effect on mortality compared to ketamine even though etomidate did cause transient adrenal suppression.[33] In addition, a recent meta-analysis done by Hohl could not conclude that etomidate increased mortality.[10] The authors of this meta-analysis concluded more studies were needed because of lack of statistical power to conclude definitively about the effect of etomidate on mortality. Thus, Hohl suggests a burden to prove etomidate is safe for use in septic patients, and more research is needed before it is used.[10] Other authors[34][35][36] advise giving a prophylactic dose of steroids (e.g. hydrocortisone) if etomidate is used, but only one small prospective controlled study[36] in patients undergoing colorectal surgery has verified the safety of giving stress dose corticosteroids to all patients receiving etomidate.
In a retrospective review of almost 32,000 people, etomidate, when used for the induction of anaesthesia, was associated 2.5-fold increase in the risk of dying compared with those given propofol.[37] People given etomidate also had significantly greater odds of having cardiovascular morbidity and significantly longer hospital stay.[37] Given the retrospective design of this study, it is difficult to draw any firm conclusions from the data.
In people with traumatic brain injury, etomidate use is associated with a blunting of an ACTH stimulation test.[26] The clinical impact of this effect has yet to be determined.
In addition, concurrent use of etomidate with opioids and/or benzodiazepines, is hypothesized to exacerbate etomidate-related adrenal insufficiency.[38][39] However, only retrospective evidence of this effect exists and prospective studies are needed to measure the clinical impact of this interaction.
Etomidate is associated with a high incidence of burning on injection, postoperative nausea and vomiting, and superficial thrombophlebitis (with rates higher than propofol).[40]
Pharmacology
Pharmacodynamics
(R)-Etomidate is tenfold more potent than its (S)-enantiomer. At low concentrations (R)-etomidate is a modulator at GABAAreceptors[42] containing β2 and β3[43] subunits. At higher concentrations, it can elicit currents in the absence of GABA and behaves as an allosteric agonist. Its binding site is located in the transmembrane section of this receptor between the beta and alpha subunits (β+α−). β3-containing GABAA receptors are involved in the anesthetic actions of etomidate, while the β2-containing receptors are involved in some of the sedation and other actions that can be elicited by this drug.[44]
Pharmacokinetics
At the typical dose, anesthesia is induced for the duration of about 5–10 minutes, though the half-life of drug metabolism is about 75 minutes, because etomidate is redistributed from the plasma to other tissues.
Onset of action: 30–60 seconds
Peak effect: 1 minute
Duration: 3–5 minutes; terminated by redistribution
Etomidate is usually presented as a clear colourless solution for injection containing 2 mg/mL of etomidate in an aqueous solution of 35% propylene glycol, although a lipid emulsion preparation (of equivalent strength) has also been introduced. Etomidate was originally formulated as a racemic mixture,[45] but the R form is substantially more active than its enantiomer.[46] It was later reformulated as a single-enantiomer drug, becoming the first general anesthetic in that class to be used clinically.[47]
^Vinson DR, Bradbury DR (June 2002). "Etomidate for procedural sedation in emergency medicine". Annals of Emergency Medicine. 39 (6): 592–598. doi:10.1067/mem.2002.123695. PMID12023700.
^ abcBergen JM, Smith DC (1998). "A review of etomidate for rapid sequence intubation in the emergency department". The Journal of Emergency Medicine. 15 (2): 221–230. doi:10.1016/S0736-4679(96)00350-2. PMID9144065.
^Di Liddo L, D'Angelo A, Nguyen B, Bailey B, Amre D, Stanciu C (October 2006). "Etomidate versus midazolam for procedural sedation in pediatric outpatients: a randomized controlled trial". Annals of Emergency Medicine. 48 (4): 433–40, 440.e1. doi:10.1016/j.annemergmed.2006.03.004. PMID16997680.
^Miner JR, Danahy M, Moch A, Biros M (January 2007). "Randomized clinical trial of etomidate versus propofol for procedural sedation in the emergency department". Annals of Emergency Medicine. 49 (1): 15–22. doi:10.1016/j.annemergmed.2006.06.042. PMID16997421.
^ abcdeHohl CM, Kelly-Smith CH, Yeung TC, Sweet DD, Doyle-Waters MM, Schulzer M (August 2010). "The effect of a bolus dose of etomidate on cortisol levels, mortality, and health services utilization: a systematic review". Annals of Emergency Medicine. 56 (2): 105–13.e5. doi:10.1016/j.annemergmed.2010.01.030. PMID20346542.
^Sokolove PE, Price DD, Okada P (February 2000). "The safety of etomidate for emergency rapid sequence intubation of pediatric patients". Pediatric Emergency Care. 16 (1): 18–21. doi:10.1097/00006565-200002000-00005. PMID10698137. S2CID24913220.
^ abWalls RM, Murphy MF, Schneider RE, eds. (2000). Manual of emergency airway management.
^Marx J (2002). Rosen's emergency medicine: concepts and clinical practice.
^Wadbrook PS (November 2000). "Advances in airway pharmacology. Emerging trends and evolving controversy". Emergency Medicine Clinics of North America. 18 (4): 767–788. doi:10.1016/S0733-8627(05)70158-9. PMID11130938.
^Gu WJ, Wang F, Tang L, Liu JC (February 2015). "Single-dose etomidate does not increase mortality in patients with sepsis: a systematic review and meta-analysis of randomized controlled trials and observational studies". Chest. 147 (2): 335–346. doi:10.1378/chest.14-1012. PMID25255427.
^Jones-Gotman M, Sziklas V, Djordjevic J (August 2009). "Intracarotid amobarbital procedure and etomidate speech and memory test". The Canadian Journal of Neurological Sciences. Le Journal Canadien des Sciences Neurologiques. 36 (Suppl 2): S51 –S54. PMID19760903.
^Jones-Gotman M, Sziklas V, Djordjevic J, Dubeau F, Gotman J, Angle M, et al. (December 2005). "Etomidate speech and memory test (eSAM): a new drug and improved intracarotid procedure". Neurology. 65 (11): 1723–1729. doi:10.1212/01.wnl.0000187975.78433.cb. PMID16344513. S2CID1835535.
^Patel A, Wordell C, Szarlej D (March 2011). "Alternatives to sodium amobarbital in the Wada test". The Annals of Pharmacotherapy. 45 (3): 395–401. doi:10.1345/aph.1P476. PMID21325100. S2CID207264114.
^Wagner RL, White PF, Kan PB, Rosenthal MH, Feldman D (May 1984). "Inhibition of adrenal steroidogenesis by the anesthetic etomidate". The New England Journal of Medicine. 310 (22): 1415–1421. doi:10.1056/NEJM198405313102202. PMID6325910.
^Jackson WL (March 2005). "Should we use etomidate as an induction agent for endotracheal intubation in patients with septic shock?: a critical appraisal". Chest. 127 (3): 1031–1038. doi:10.1378/chest.127.3.1031. PMID15764790.
^ abBloomfield R, Noble DW (June 2006). "Exploring the role of etomidate in septic shock and acute respiratory distress syndrome". Critical Care Medicine. 34 (6): 1858, author reply 1858-1858, author reply 1859. doi:10.1097/01.ccm.0000220048.38438.40. PMID16715011.
^Cuthbertson BH, Sprung CL, Annane D, Chevret S, Garfield M, Goodman S, et al. (November 2009). "The effects of etomidate on adrenal responsiveness and mortality in patients with septic shock". Intensive Care Medicine. 35 (11): 1868–1876. doi:10.1007/s00134-009-1603-4. PMID19652948. S2CID24371957.
^Jabre P, Combes X, Lapostolle F, Dhaouadi M, Ricard-Hibon A, Vivien B, et al. (July 2009). "Etomidate versus ketamine for rapid sequence intubation in acutely ill patients: a multicentre randomised controlled trial". Lancet. 374 (9686): 293–300. doi:10.1016/S0140-6736(09)60949-1. PMID19573904. S2CID52230993.
^Schulz-Stübner S (November 2005). "Sedation in traumatic brain injury: avoid etomidate". Critical Care Medicine. 33 (11): 2723, author reply 2723. doi:10.1097/01.ccm.0000187093.71107.a8. PMID16276231.
^ abStuttmann R, Allolio B, Becker A, Doehn M, Winkelmann W (September 1988). "[Etomidate versus etomidate and hydrocortisone for anesthesia induction in abdominal surgical interventions]". Der Anaesthesist. 37 (9): 576–582. PMID3056084.
^Daniell HW (December 2008). "Opioid contribution to decreased cortisol levels in critical care patients". Archives of Surgery. 143 (12): 1147–1148. doi:10.1001/archsurg.143.12.1147. PMID19075164.
^Kosarek L, et al. Increase in Venous Complications Associated With Etomidate Use During a Propofol Shortage: An Example of Clinically Important Adverse Effects Related to Drug Substitution. The Ochsner Journal. 2011;11:143-146.
^Drexler B, Jurd R, Rudolph U, Antkowiak B (September 2009). "Distinct actions of etomidate and propofol at beta3-containing gamma-aminobutyric acid type A receptors". Neuropharmacology. 57 (4): 446–455. doi:10.1016/j.neuropharm.2009.06.014. PMID19555700. S2CID26796180.
^Servin FS, Sear JW (2011). "Chapter 27. Pharmacokinetics of intravenous anesthetics". In Evers AS, Maze M, Kharasch ED (eds.). Anesthetic Pharmacology: Basic Principles and Clinical Practice (2nd ed.). Cambridge University Press.
Marik PE, Pastores SM, Annane D, Meduri GU, Sprung CL, Arlt W, et al. (American College of Critical Care Medicine) (June 2008). "Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine". Critical Care Medicine. 36 (6): 1937–1949. doi:10.1097/CCM.0b013e31817603ba. PMID18496365. S2CID7861625.
Mullins ME, Theodoro DL (August 2008). "Lack of evidence for adrenal insufficiency after single-dose etomidate". Archives of Surgery. 143 (8): 808–9, author reply 809. doi:10.1001/archsurg.143.8.808-c. PMID18711047.; author reply 809.
Vinclair M, Broux C, Faure P, Brun J, Genty C, Jacquot C, et al. (April 2008). "Duration of adrenal inhibition following a single dose of etomidate in critically ill patients". Intensive Care Medicine. 34 (4): 714–719. doi:10.1007/s00134-007-0970-y. PMID18092151. S2CID23538535.
External links
"Etomidate". Drug Information Portal. U.S. National Library of Medicine.