Dual specificity protein phosphatase 1 is an enzyme that in humans is encoded by the DUSP1gene.[5][6]
Function
The expression of DUSP1 gene is induced in human skin fibroblasts by oxidative/heat stress and growth factors. It specifies a protein with structural features similar to members of the non-receptor-type protein-tyrosine phosphatase family, and which has significant amino-acid sequence similarity to a Tyr/Ser-protein phosphatase encoded by the late gene H1 of vaccinia virus. The bacterially expressed and purified DUSP1 protein has intrinsic phosphatase activity, and specifically inactivates mitogen-activated protein (MAP) kinase in vitro by the concomitant dephosphorylation of both its phosphothreonine and phosphotyrosine residues. Furthermore, it suppresses the activation of MAP kinase by oncogenic ras in extracts of Xenopus oocytes. Thus, DUSP1 may play an important role in the human cellular response to environmental stress as well as in the negative regulation of cellular proliferation.[7]
Keyse SM (Apr 1998). "Protein phosphatases and the regulation of MAP kinase activity". Seminars in Cell & Developmental Biology. 9 (2): 143–52. doi:10.1006/scdb.1997.0219. PMID9599409.
Abraham SM, Clark AR (Dec 2006). "Dual-specificity phosphatase 1: a critical regulator of innate immune responses". Biochemical Society Transactions. 34 (Pt 6): 1018–23. doi:10.1042/BST0341018. PMID17073741.
Emslie EA, Jones TA, Sheer D, Keyse SM (May 1994). "The CL100 gene, which encodes a dual specificity (Tyr/Thr) MAP kinase phosphatase, is highly conserved and maps to human chromosome 5q34". Human Genetics. 93 (5): 513–6. doi:10.1007/BF00202814. PMID8168826. S2CID12590731.
Sun H, Charles CH, Lau LF, Tonks NK (Nov 1993). "MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo". Cell. 75 (3): 487–93. doi:10.1016/0092-8674(93)90383-2. PMID8221888. S2CID29988777.
Alessi DR, Smythe C, Keyse SM (Jul 1993). "The human CL100 gene encodes a Tyr/Thr-protein phosphatase which potently and specifically inactivates MAP kinase and suppresses its activation by oncogenic ras in Xenopus oocyte extracts". Oncogene. 8 (7): 2015–20. PMID8390041.