Courant–Friedrichs–Lewy condition

In mathematics, the convergence condition by Courant–Friedrichs–Lewy is a necessary condition for convergence while solving certain partial differential equations (usually hyperbolic PDEs) numerically. It arises in the numerical analysis of explicit time integration schemes, when these are used for the numerical solution. As a consequence, the time step must be less than a certain upper bound, given a fixed spatial increment, in many explicit time-marching computer simulations; otherwise, the simulation produces incorrect or unstable results. The condition is named after Richard Courant, Kurt Friedrichs, and Hans Lewy who described it in their 1928 paper.[1]

Heuristic description

The principle behind the condition is that, for example, if a wave is moving across a discrete spatial grid and we want to compute its amplitude at discrete time steps of equal duration,[2] then this duration must be less than the time for the wave to travel to adjacent grid points. As a corollary, when the grid point separation is reduced, the upper limit for the time step also decreases. In essence, the numerical domain of dependence of any point in space and time (as determined by initial conditions and the parameters of the approximation scheme) must include the analytical domain of dependence (wherein the initial conditions have an effect on the exact value of the solution at that point) to assure that the scheme can access the information required to form the solution.

Statement

To make a reasonably formally precise statement of the condition, it is necessary to define the following quantities:

  • Spatial coordinate: one of the coordinates of the physical space in which the problem is posed
  • Spatial dimension of the problem: the number of spatial dimensions, i.e., the number of spatial coordinates of the physical space where the problem is posed. Typical values are , and .
  • Time: the coordinate, acting as a parameter, which describes the evolution of the system, distinct from the spatial coordinates

The spatial coordinates and the time are discrete-valued independent variables, which are placed at regular distances called the interval length[3] and the time step, respectively. Using these names, the CFL condition relates the length of the time step to a function of the interval lengths of each spatial coordinate and of the maximum speed that information can travel in the physical space.

Operatively, the CFL condition is commonly prescribed for those terms of the finite-difference approximation of general partial differential equations that model the advection phenomenon.[4]

The one-dimensional case

For the one-dimensional case, the continuous-time model equation (that is usually solved for ) is:

The CFL condition then has the following form:

where the dimensionless number is called the Courant number,

  • is the magnitude of the velocity (whose dimension is length/time)
  • is the time step (whose dimension is time)
  • is the length interval (whose dimension is length).

The value of changes with the method used to solve the discretised equation, especially depending on whether the method is explicit or implicit. If an explicit (time-marching) solver is used then typically . Implicit (matrix) solvers are usually less sensitive to numerical instability and so larger values of may be tolerated.

The two and general n-dimensional case

In the two-dimensional case, the CFL condition becomes

with the obvious meanings of the symbols involved. By analogy with the two-dimensional case, the general CFL condition for the -dimensional case is the following one:

The interval length is not required to be the same for each spatial variable . This "degree of freedom" can be used to somewhat optimize the value of the time step for a particular problem, by varying the values of the different interval to keep it not too small.

Notes

  1. ^ See reference Courant, Friedrichs & Lewy 1928. There exists also an English translation of the 1928 German original: see references Courant, Friedrichs & Lewy 1956 and Courant, Friedrichs & Lewy 1967.
  2. ^ This situation commonly occurs when a hyperbolic partial differential operator has been approximated by a finite difference equation, which is then solved by numerical linear algebra methods.
  3. ^ This quantity is not necessarily the same for each spatial variable, as it is shown in "The two and general n–dimensional case" section of this entry: it can be selected to somewhat relax the condition.
  4. ^ Precisely, this is the hyperbolic part of the PDE under analysis.

References

  • Courant, R.; Friedrichs, K.; Lewy, H. (1928), "Über die partiellen Differenzengleichungen der mathematischen Physik", Mathematische Annalen (in German), 100 (1): 32–74, Bibcode:1928MatAn.100...32C, doi:10.1007/BF01448839, JFM 54.0486.01, MR 1512478, S2CID 120760331.
  • Courant, R.; Friedrichs, K.; Lewy, H. (September 1956) [1928], On the partial difference equations of mathematical physics, AEC Research and Development Report, vol. NYO-7689, New York: AEC Computing and Applied Mathematics Centre – Courant Institute of Mathematical Sciences, pp. V + 76, archived from the original on October 23, 2008.: translated from the German by Phyllis Fox. This is an earlier version of the paper Courant, Friedrichs & Lewy 1967, circulated as a research report.
  • Courant, R.; Friedrichs, K.; Lewy, H. (March 1967) [1928], "On the partial difference equations of mathematical physics", IBM Journal of Research and Development, 11 (2): 215–234, Bibcode:1967IBMJ...11..215C, doi:10.1147/rd.112.0215, MR 0213764, Zbl 0145.40402. A freely downloadable copy can be found here.
  • Carlos A. de Moura and Carlos S. Kubrusly (Eds.): "The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years After Its Discovery", Birkhauser, ISBN 978-0-8176-8393-1 (2013).

Read other articles:

Untuk kegunaan lain, lihat Bentuk gelombang (disambiguasi). Bentuk gelombang sinus, persegi, segitiga, dan gigi gergaji Gelombang sinus, persegi, dan gelombang gigi gergaji pada frekuensi 440 Hz Bentuk gelombang komposit seperti tetesan air Bentuk gelombang yang dihasilkan oleh penyintesis Dalam elektronika, akustika, dan sebagainya, bentuk gelombang dari sebuah sinyal berbentuk grafik sebagai fungsi terhadap waktu.[1][2] Dalam elektronika, istilah bentuk gelombang biasanya di...

 

ألبرتو إنتريريوس معلومات شخصية اسم الولادة (بالإسبانية: Alberto Entrerríos Rodríguez)‏  الميلاد 7 نوفمبر 1976 (العمر 47 سنة)إسبانيا الطول 1.92 م (6 قدم 4 بوصة) مركز اللعب ظهير  [لغات أخرى]‏  الجنسية إسباني الوزن 102 كيلوغرام (225 رطل) أخوة وأخوات راؤول إنتريريوس  الحياة ا...

 

Пляж ПревеліΠρέβελη Загальна інформація 35°09′07″ пн. ш. 24°28′26″ сх. д. / 35.152222220027773858° пн. ш. 24.47388889002778001° сх. д. / 35.152222220027773858; 24.47388889002778001Координати: 35°09′07″ пн. ш. 24°28′26″ сх. д. / 35.152222220027773858° пн. ш. 24.47388889002778001° сх. ...

El texto que sigue es una traducción defectuosa. Si quieres colaborar con Wikipedia, busca el artículo original y mejora esta traducción.Copia y pega el siguiente código en la página de discusión del autor de este artículo: {{subst:Aviso mal traducido|Crímenes de guerra alemanes}} ~~~~ El gueto de Varsovia – Foto del informe de Jürgen Stroop a Heinrich Himmler a partir de mayo de 1943. El título original en alemán dice: Por la fuerza se retiraron de refugios subterráneos. La ún...

 

JB12Stasiun Sendagaya千駄ケ谷駅Pintu masuk Stasiun Sendagaya pada bulan Juni 2020Lokasi1 Sendagaya, Shibuya, Tokyo(東京都渋谷区千駄ヶ谷1丁目)JepangPengelolaJR EastJalurJB Jalur Chūō-SōbuSejarahDibuka1904PenumpangFY201120,008 per hari Operasi layanan Stasiun sebelumnya JR East Stasiun berikutnya YoyogiJB11kearah Mitaka Jalur Chūō–Sōbu ShinanomachiJB13kearah Chiba Sunting kotak info • L • BBantuan penggunaan templat ini Stasiun Sendagaya (千駄ケ谷...

 

Véanse también: Eurovision y Eurozona. Una bolsa con las primeras monedas de euro de Eslovaquia en ser fabricadas. El euro (EUR o €) es la moneda oficial de las instituciones de la Unión Europea desde 1999 (cuando sustituyó al ECU), de los Estados que pertenecen a la eurozona[1]​[2]​ y de los micro-Estados europeos con los que la Unión tiene acuerdos al respecto. También es utilizado de facto en Montenegro y Kosovo.[3]​ Las monedas de euro están diseñadas ...

البروتستانتية الخط الرئيسي أو البروتستانتية التقليدية هو مصطلح شائع في الولايات المتحدة لوصف الكنائس البروتستانتية التقليدية والتي تشمل سبع مذاهب وهي المشيخية، والأبرشانية، والأسقفية، والميثودية، واللوثرية، والمعمدانية ولهذه المذاهب قاعدة اجتماعية عريضة راسخة في ال...

 

フジ・メディア・ホールディングス > ポニーキャニオン この項目は画像改訂依頼に出されており、2004年から2016年までのロゴマークを高解像度版とするよう画像改訂が求められています。(2023年5月) 株式会社ポニーキャニオンPONY CANYON INC. 本社が入居する泉ガーデンANNEX種類 株式会社略称 PC、ポニキャン(ぽにきゃん)本社所在地 日本〒106-8487東京都港区六本木...

 

Official flags of the U.S. city of New York City City of New YorkAdoptedApril 6, 1915(modified December 30, 1977)DesignA vertical tricolor of blue, white, and orange with a modified blue version of the Seal of New York City in the center. The flag unfurled and fluttering, mounted on a city park yardarm The flags of New York City include the flag of New York City, the respective flags of the boroughs of The Bronx, Brooklyn, Manhattan, Queens, and Staten Island, and flags of certain city depart...

Covaxin Covaxin (tên mã là BBV152) là một loại vắc xin COVID-19 dựa trên virus bất hoạt được Bharat Biotech phối hợp với Hội đồng Nghiên cứu Y khoa Ấn Độ phát triển. Hiệu quả Vào tháng 7 năm 2021, Bharat Biotech báo cáo vắc xin có hiệu quả 64% đối với các trường hợp không có triệu chứng, 78% hiệu quả đối với các trường hợp có triệu chứng, 93% hiệu quả chống lại nhiễm COVID-19 nghiêm tr...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sega Heroes – news · newspapers · books · scholar · JSTOR (November 2023) (Learn how and when to remove this template message) 2018 video gameSega HeroesCover artwork of Sega Heroes, featuring (from left to right) Gum, Werebear, and ChuPeaDeveloper(s)Demiurge S...

 

Railway station in Minamiashigara, Kanagawa Prefecture, Japan Fujifilm-Mae Station富士フイルム前駅Fujifilm-Mae Station, March 2014General informationLocation60-1 Kano, Minamiashigara-shi, Kanagawa-ken 250-0126JapanCoordinates35°19′3.6″N 139°6′32.0″E / 35.317667°N 139.108889°E / 35.317667; 139.108889Operated by Izuhakone RailwayLine(s) Daiyūzan LineDistance9.1 km from Odawara.Platforms1 side platformConnections Bus stop Other informationStation...

LighthouseGros Cap Reefs Light LocationSault Ste. Marie Ontario CanadaCoordinates46°30′42″N 84°36′53″W / 46.51167°N 84.61472°W / 46.51167; -84.61472TowerConstructionskeletal towerHeight18 metres (59 ft)Shapeskeletal mast on a three-story keeper's quartersMarkingswhite tower with red trimOperatorCanadian Coast Guard[1]LightFirst lit1953Focal height18 metres (59 ft)Range12 nautical miles (22 km; 14 mi)CharacteristicFl R 5s. The...

 

3rd-century Roman Christian saint For the holiday, see Valentine's Day. For the Canadian city, see Saint-Valentin, Quebec. For the song, see Saint Valentine (song). For other uses of San Valentino, see San Valentino (disambiguation). Not to be confused with Valentinus (Gnostic) or Valentine of Passau. SaintValentineSaint Valentine is healing an epilepsy illustrated by Dr. František Ehrmann, circa 1899.Bishop of Terni and MartyrBornc. 226Terni, Italia, Roman EmpireDiedc. 269 (aged...

 

Autobiography by Doan Van Toai Le Goulag Vietnamien(First edition) First editionAuthorDoan Van Toai, as told to Michel VoirolCountryFranceLanguageFrenchGenreAutobiographyPublished1979PublisherParis : R. LaffontMedia typePrintPages341 p.ISBN2-221-00385-3OCLC476545048 The Vietnamese Gulag(First English translation) AuthorDoan Van Toai, David ChanoffOriginal titleLe Goulag VietnamienTranslatorSylvie Romanowski and Françoise Simon-Miller.Countrytr. from FranceLanguagetr. from Fren...

Railway between Port Augusta, South Australia and Kalgoorlie, Western Australia For the former passenger train between Western Australia and South Australia, see Trans-Australian. Trans-Australian Railway Route map Legend km Adelaide-Port Augusta line 0 Port Augusta branch line to Whyalla 28 Tent Hill 55 Hesso 85 Bookaloo 118 McLeay 150 Wirrappa 181 Pimba branch line to Woomera 219 Burando 250 Wirraminna 283 Coondambo 302 Kultanaby 335 Kingoonya 377 Ferguson 413 Tarcoola Tarcoola–Darw...

 

Stax RecordsLogo Stato Stati Uniti Fondazione1957 Fondata daStewart / Axton Sede principaleMemphis GruppoConcord Bicycle Music SettoreMusicale ProdottiSoul Sito webwww.staxrecords.com/ Modifica dati su Wikidata · Manuale La Stax Records è una etichetta discografica statunitense, fondata a Memphis nel 1957 con il nome di Satellite Records. Cambiò nome in Stax Records nel 1961, e fu in attività fino al 1976, anno nel quale chiuse per bancarotta. Il nome Stax è la crasi dei cognom...

 

Untuk kegunaan lain, lihat Maza. Maza Maza Revolusibumilangit.fandom.com Penerbit Bumilangit Komik Munculperdana 2017 Pencipta Harya Suraminata (Hasmi) Karakteristik Nama KarakterImajiSpesiesManusiaAfiliasikelompokJagabumiRekan perjuanganGodam Revolusi Aquanus Revolusi Sri Asih Revolusi Gundala Revolusi MandalaKemampuan Kekuatan super Memiliki Gelang yang dapat muncul jin (Jin Kartubi) yang tunduk atas perintahnya Dan merasuk kedalam mimpi Maza adalah tokoh superhero komik ciptaan Hasmi. Munc...

Questa voce o sezione sull'argomento musicisti britannici non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Jimmy Bain Nazionalità Regno Unito GenereHeavy metalHard rock Periodo di attività musicale1974 – 2016 GruppiRainbow, Dio, WWIII, 3 Legged Dogg, Last in Line Album pubblicati...

 

16 RhagfyrEnghraifft o'r canlynolpwynt mewn amser mewn perthynas ag amserlen gylchol Math16th Rhan oRhagfyr  Ffeiliau perthnasol ar Gomin Wicimedia  <<       Rhagfyr       >>  Ll Ma Me Ia Gw Sa Su 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2020 Rhestr holl ddyddiau'r flwyddyn 16 Rhagfyr yw'r hanner canfed dydd wedi'r trichant (350fed) o'...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!