Continuous mapping theorem

In probability theory, the continuous mapping theorem states that continuous functions preserve limits even if their arguments are sequences of random variables. A continuous function, in Heine's definition, is such a function that maps convergent sequences into convergent sequences: if xnx then g(xn) → g(x). The continuous mapping theorem states that this will also be true if we replace the deterministic sequence {xn} with a sequence of random variables {Xn}, and replace the standard notion of convergence of real numbers “→” with one of the types of convergence of random variables.

This theorem was first proved by Henry Mann and Abraham Wald in 1943,[1] and it is therefore sometimes called the Mann–Wald theorem.[2] Meanwhile, Denis Sargan refers to it as the general transformation theorem.[3]

Statement

Let {Xn}, X be random elements defined on a metric space S. Suppose a function g: SS′ (where S′ is another metric space) has the set of discontinuity points Dg such that Pr[X ∈ Dg] = 0. Then[4][5]

where the superscripts, "d", "p", and "a.s." denote convergence in distribution, convergence in probability, and almost sure convergence respectively.

Proof

This proof has been adopted from (van der Vaart 1998, Theorem 2.3)

Spaces S and S′ are equipped with certain metrics. For simplicity we will denote both of these metrics using the |x − y| notation, even though the metrics may be arbitrary and not necessarily Euclidean.

Convergence in distribution

We will need a particular statement from the portmanteau theorem: that convergence in distribution is equivalent to

for every bounded continuous functional f.

So it suffices to prove that for every bounded continuous functional f. For simplicity we assume g continuous. Note that is itself a bounded continuous functional. And so the claim follows from the statement above. The general case is slightly more technical.

Convergence in probability

Fix an arbitrary ε > 0. Then for any δ > 0 consider the set Bδ defined as

This is the set of continuity points x of the function g(·) for which it is possible to find, within the δ-neighborhood of x, a point which maps outside the ε-neighborhood of g(x). By definition of continuity, this set shrinks as δ goes to zero, so that limδ → 0Bδ = ∅.

Now suppose that |g(X) − g(Xn)| > ε. This implies that at least one of the following is true: either |XXn| ≥ δ, or X ∈ Dg, or XBδ. In terms of probabilities this can be written as

On the right-hand side, the first term converges to zero as n → ∞ for any fixed δ, by the definition of convergence in probability of the sequence {Xn}. The second term converges to zero as δ → 0, since the set Bδ shrinks to an empty set. And the last term is identically equal to zero by assumption of the theorem. Therefore, the conclusion is that

which means that g(Xn) converges to g(X) in probability.

Almost sure convergence

By definition of the continuity of the function g(·),

at each point X(ω) where g(·) is continuous. Therefore,

because the intersection of two almost sure events is almost sure.

By definition, we conclude that g(Xn) converges to g(X) almost surely.

See also

References

  1. ^ Mann, H. B.; Wald, A. (1943). "On Stochastic Limit and Order Relationships". Annals of Mathematical Statistics. 14 (3): 217–226. doi:10.1214/aoms/1177731415. JSTOR 2235800.
  2. ^ Amemiya, Takeshi (1985). Advanced Econometrics. Cambridge, MA: Harvard University Press. p. 88. ISBN 0-674-00560-0.
  3. ^ Sargan, Denis (1988). Lectures on Advanced Econometric Theory. Oxford: Basil Blackwell. pp. 4–8. ISBN 0-631-14956-2.
  4. ^ Billingsley, Patrick (1969). Convergence of Probability Measures. John Wiley & Sons. p. 31 (Corollary 1). ISBN 0-471-07242-7.
  5. ^ van der Vaart, A. W. (1998). Asymptotic Statistics. New York: Cambridge University Press. p. 7 (Theorem 2.3). ISBN 0-521-49603-9.

Read other articles:

Antonius de Rosellis Antonius de Rosellis (italienisch Antonio Rosselli, * 1381 in Arezzo; † 16. Dezember 1466 in Padua) war ein italienischer Kirchenrechtler. Inhaltsverzeichnis 1 Biografie 2 Werke 3 Rezeptionsgeschichte 4 Literatur 5 Weblinks 6 Anmerkungen Biografie Antonius de Rosellis entstammte einer alten aristokratischen Familie der Stadt Arezzo. Sein Vater Rosello war ein Schüler des berühmten Rechtsgelehrten Bartolus de Saxoferrato und hatte verschiedene Ämter inne, die Mutter i...

 

Das Mahnmal für die ermordeten Juden Hannovers auf dem Opernplatz mit der 2013 enthüllten Informationstafel Das Mahnmal für die ermordeten Juden Hannovers wurde 1994 nach einem Entwurf des italienischen Künstlers Michelangelo Pistoletto auf dem Opernplatz aufgestellt, einem der zentralen Plätze Hannovers. Das auf Initiative des Vereins Memoriam aus privaten Spenden errichtete Mahnmal neben dem Opernhaus erinnert an mehr als 6.800 Juden, die Opfer des Nationalsozialismus wurden. Bisher wu...

 

Camilo discographyCamilo in 2019Studio albums2Singles19Promotional singles1Mixtapes2 Colombian singer Camilo has released three studio albums, two mixtapes,[1] and 19 singles, including nine as a featured artist and duets.[2] Albums Studio albums Title Studio album details Peaks Certifications SPA[3] US[4] USLatin[5] USLatinPop[6] Por Primera Vez Released: April 17, 2020[2][7] Label: Sony Latin, HAMM Formats: CD, digital download...

1941 rebellion in Croatia Srb uprisingPart of World War II in YugoslaviaDate27 July – September 1941LocationLika and western Bosnia, Independent State of Croatia44°22′17″N 16°07′32″E / 44.371355°N 16.125526°E / 44.371355; 16.125526Belligerents Partisans Chetniks  Independent State of CroatiaCommanders and leaders Stojan Matić Đoko Jovanić Gojko Polovina Boško Rašeta Stevo Rađenović Pero Đilas Dane Stanisavljević Mihajlo Lukić Vladimir Veber...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: L&YR Class 30 – news · newspapers · books · scholar · JSTOR (March 2015) (Learn how and when to remove this template message) For other uses, see L&YR Class 30 (disambiguation). L&YR Class 30L&YR 0-8-0 Class 30 with standard Belpaire boilerType ...

 

French film producer Carole BienaiméPersonal detailsBornCarole Bienaimé (1973-12-18) December 18, 1973 (age 49)NationalityFrenchSpouseGuillaume BesseOccupationMember of the Conseil supérieur de l'audiovisuel, Producer, Screenwriter, and Director Carole Bienaimé (also Carole Bienaimé-Besse), is a commissioner and board member of Conseil Supérieur de l'Audiovisuel, an independent agency of French government that regulates communications by radio, television, and internet platforms ac...

Freeport IndonesiaLogo sebelum divestasi sahamJenisPerseroan terbatasIndustriPertambanganDidirikan7 April 1967 (hari jadi perusahaan)KantorpusatPlaza 89, DKI JakartaKuala Kencana, Mimika, Papua Tengah (Pateng)TokohkunciRichard C. AdkersonPresiden KomisarisClayton Allen Tony WenasPresiden DirekturProdukKonsentrat (tembaga, emas, perak)Pemilik Pemerintah Indonesia (51,23%)[1] PT Mineral Industri Indonesia (Persero) (41,23%) PT Indonesia Papua Metal & Mineral (10,00%) Freeport-McMoRa...

 

Medieval castle in Penedono, Viseu, Portugal Castle of PenedonoCastelo de PenedonoViseu, Douro, Norte Region, Portugal in PortugalThe Castle of Penedono and pillory, as seen from the lower portion of the medieval townCoordinates40°59′24″N 7°23′38″W / 40.98998°N 7.39375°W / 40.98998; -7.39375TypeCastleSite informationOwnerPortuguese RepublicOperatorCâmara Municipal de Penedono (ceded on 21 October 1941)Open tothe publicPublicSite historyMater...

 

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: The Chicas Project – news · newspapers · books · scholar · JSTOR (July 2009) (Learn how and when to remove this template message) American TV series or program The Chicas ProjectStarringYasmin DelizMelissa BarreraCountry of originUnited StatesNo. of seasons4No. of episodes35ProductionRunning time60 mi...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mob Sister – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this template message) 2005 Hong Kong filmMob SisterDirected byWong Ching-PoWritten bySzeto Kam-YuenJack NgProduced byLawrence ChengMichael J. WernerWouter Barend...

 

Abbey WoodSite of Special Scientific InterestLocationGreater LondonGrid referenceTQ481786InterestGeologicalArea6.3 hectaresNotification1987Location mapMagic Map The Fossil Bed where members of the public are allowed to dig for fossils Abbey Wood is a 6.3-hectare (16-acre) geological Site of Special Scientific Interest in Abbey Wood in the London Borough of Bexley. It is located in Lesnes Abbey Woods south-east of the ruins of Lesnes Abbey.[1] Members of the public can dig for fossils ...

 

Civil parish in Lisbon, PortugalParque das NaçõesCivil parish Clockwise: View of the Parque das Nações with Altice Arena; Lisbon Oceanarium; Lisbon Justice Campus; Gare do Oriente; Vasco da Gama Tower; Portugal Pavillion.Coordinates: 38°46′05″N 9°05′38″W / 38.768°N 9.094°W / 38.768; -9.094Country PortugalRegionLisbonMetropolitan areaLisbonDistrictLisbonMunicipalityLisbonArea • Total5.44 km2 (2.10 sq mi)Population (20...

FroukjeFroukje in 2020.Background informationBirth nameFroukje VeenstraBorn (2001-09-04) 4 September 2001 (age 22)Nieuwkoop, NetherlandsGenres Pop Synthpop[1] Occupation(s) singer songwriter Years active 2020–present Labels TopNotch Musical artist Froukje Veenstra (born 4 September 2001), better known by simply Froukje, is a Dutch singer-songwriter. Early life Froukje Veenstra was born into a family of teachers, for whom music always played a central role. She used to play in t...

 

This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (November 2020) Comics character LionheartLionheart.Art by Olivier Coipel.Publication informationPublisherMarvel ComicsFirst appearanceThe Avengers vol. 3 #77 (March 2004)Created byChuck Austen (Writer)Olivier Coipel (Artist)In-story informationAlter egoKelsey Leigh KirklandSpeciesHuman mutateTeam aff...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Rosalind Plowright –&...

This article is about the 2013 novel. For the film, see Crazy Rich Asians (film). For other uses, see Crazy Rich Asians (disambiguation). 2013 romantic comedy novel by Kevin Kwan Crazy Rich Asians AuthorKevin KwanLanguageEnglishGenreNovelPublisherDoubledayPublication date2013Media typePrintISBN978-0-385-53697-4Followed byChina Rich Girlfriend  Crazy Rich Asians is a satirical 2013 romantic comedy novel by Kevin Kwan. Kwan stated that his intention in writing the novel was to in...

 

Magnete a ferro di cavallo Con magnete a ferro di cavallo viene designato un tipo di magnete, che ha la forma di ferro di cavallo. Questo forma permette al magnete di avere un campo magnetico omogeneo al suo interno. Il campo magnetico al suo esterno non è omogeneo. Un magnete a ferro di cavallo è in principio un magnete a barra curvato. Il principale vantaggio di questa foggia è che – essendo i poli ravvicinati – il campo magnetico risulta più intenso che con altre conformazioni. Bib...

 

Voce principale: Associazione Calcio Femminile Gorgonzola. A.C.F. Gorgonzola ItalinoxStagione 1977Sport calcio SquadraAssociazione Calcio Femminile Gorgonzola Allenatore Rino Mussi Presidente Paola e Livio Bolis Serie A10º posto. Coppa Italia???. StadioStadio Comunale 1976 1978 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Associazione Calcio Femminile Gorgonzola Italinox nelle competizioni ufficiali della stagione 1977. Indice 1 Stagione 2 Rosa 3...

Jiang Guangnai蒋光鼐Governor of Fukien ProvinceIn office7 December 1932 – 20 December 1933Preceded byYang Shu-chuangChen Nai-yuan (acting)Fang Sheng-tao (acting)Succeeded byChen Yi Personal detailsBorn17 December 1888Dongguan, GuangdongDied8 June 1967(1967-06-08) (aged 78)Beijing, People's Republic of ChinaNationalityChinesePolitical partyKuomintangMilitary serviceAllegiance Republic of ChinaRankLieutenant GeneralCommands19th Route Army Jiang Guangnai (simplified Chine...

 

Alap alap coklat Status konservasi Risiko Rendah (IUCN 3.1) Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Falconiformes Famili: Accipitridae Genus: Falco Spesies: F. berigora Nama binomial Falco berigoraVigors & Horsfield, 1827 Sinonim Asturaetus furcillatus De Vis, 1906 Plioaetus furcillatus (De Vis, 1906) Alap-alap coklat (Latin: Falco berigoracode: la is deprecated ) merupakan spesies burung dari famili Accipitridae. Burung ini dideskripsikan pertam...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!