Collinearity

In geometry, collinearity of a set of points is the property of their lying on a single line.[1] A set of points with this property is said to be collinear (sometimes spelled as colinear[2]). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

Points on a line

In any geometry, the set of points on a line are said to be collinear. In Euclidean geometry this relation is intuitively visualized by points lying in a row on a "straight line". However, in most geometries (including Euclidean) a line is typically a primitive (undefined) object type, so such visualizations will not necessarily be appropriate. A model for the geometry offers an interpretation of how the points, lines and other object types relate to one another and a notion such as collinearity must be interpreted within the context of that model. For instance, in spherical geometry, where lines are represented in the standard model by great circles of a sphere, sets of collinear points lie on the same great circle. Such points do not lie on a "straight line" in the Euclidean sense, and are not thought of as being in a row.

A mapping of a geometry to itself which sends lines to lines is called a collineation; it preserves the collinearity property. The linear maps (or linear functions) of vector spaces, viewed as geometric maps, map lines to lines; that is, they map collinear point sets to collinear point sets and so, are collineations. In projective geometry these linear mappings are called homographies and are just one type of collineation.

Examples in Euclidean geometry

Triangles

In any triangle the following sets of points are collinear:

Quadrilaterals

Hexagons

  • Pascal's theorem (also known as the Hexagrammum Mysticum Theorem) states that if an arbitrary six points are chosen on a conic section (i.e., ellipse, parabola or hyperbola) and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon (extended if necessary) meet in three points which lie on a straight line, called the Pascal line of the hexagon. The converse is also true: the Braikenridge–Maclaurin theorem states that if the three intersection points of the three pairs of lines through opposite sides of a hexagon lie on a line, then the six vertices of the hexagon lie on a conic, which may be degenerate as in Pappus's hexagon theorem.

Conic sections

  • By Monge's theorem, for any three circles in a plane, none of which is completely inside one of the others, the three intersection points of the three pairs of lines, each externally tangent to two of the circles, are collinear.
  • In an ellipse, the center, the two foci, and the two vertices with the smallest radius of curvature are collinear, and the center and the two vertices with the greatest radius of curvature are collinear.
  • In a hyperbola, the center, the two foci, and the two vertices are collinear.

Cones

  • The center of mass of a conic solid of uniform density lies one-quarter of the way from the center of the base to the vertex, on the straight line joining the two.

Tetrahedrons

Algebra

Collinearity of points whose coordinates are given

In coordinate geometry, in n-dimensional space, a set of three or more distinct points are collinear if and only if, the matrix of the coordinates of these vectors is of rank 1 or less. For example, given three points

if the matrix

is of rank 1 or less, the points are collinear.

Equivalently, for every subset of X, Y, Z, if the matrix

is of rank 2 or less, the points are collinear. In particular, for three points in the plane (n = 2), the above matrix is square and the points are collinear if and only if its determinant is zero; since that 3 × 3 determinant is plus or minus twice the area of a triangle with those three points as vertices, this is equivalent to the statement that the three points are collinear if and only if the triangle with those points as vertices has zero area.

Collinearity of points whose pairwise distances are given

A set of at least three distinct points is called straight, meaning all the points are collinear, if and only if, for every three of those points A, B, C, the following determinant of a Cayley–Menger determinant is zero (with d(AB) meaning the distance between A and B, etc.):

This determinant is, by Heron's formula, equal to −16 times the square of the area of a triangle with side lengths d(AB), d(BC), d(AC); so checking if this determinant equals zero is equivalent to checking whether the triangle with vertices A, B, C has zero area (so the vertices are collinear).

Equivalently, a set of at least three distinct points are collinear if and only if, for every three of those points A, B, C with d(AC) greater than or equal to each of d(AB) and d(BC), the triangle inequality d(AC) ≤ d(AB) + d(BC) holds with equality.

Number theory

Two numbers m and n are not coprime—that is, they share a common factor other than 1—if and only if for a rectangle plotted on a square lattice with vertices at (0, 0), (m, 0), (m, n), (0, n), at least one interior point is collinear with (0, 0) and (m, n).

Concurrency (plane dual)

In various plane geometries the notion of interchanging the roles of "points" and "lines" while preserving the relationship between them is called plane duality. Given a set of collinear points, by plane duality we obtain a set of lines all of which meet at a common point. The property that this set of lines has (meeting at a common point) is called concurrency, and the lines are said to be concurrent lines. Thus, concurrency is the plane dual notion to collinearity.

Collinearity graph

Given a partial geometry P, where two points determine at most one line, a collinearity graph of P is a graph whose vertices are the points of P, where two vertices are adjacent if and only if they determine a line in P.

Usage in statistics and econometrics

In statistics, collinearity refers to a linear relationship between two explanatory variables. Two variables are perfectly collinear if there is an exact linear relationship between the two, so the correlation between them is equal to 1 or −1. That is, X1 and X2 are perfectly collinear if there exist parameters and such that, for all observations i, we have

This means that if the various observations (X1i, X2i) are plotted in the (X1, X2) plane, these points are collinear in the sense defined earlier in this article.

Perfect multicollinearity refers to a situation in which k (k ≥ 2) explanatory variables in a multiple regression model are perfectly linearly related, according to

for all observations i. In practice, we rarely face perfect multicollinearity in a data set. More commonly, the issue of multicollinearity arises when there is a "strong linear relationship" among two or more independent variables, meaning that

where the variance of is relatively small.

The concept of lateral collinearity expands on this traditional view, and refers to collinearity between explanatory and criteria (i.e., explained) variables.[10]

Usage in other areas

Antenna arrays

An antenna mast with four collinear directional arrays.

In telecommunications, a collinear (or co-linear) antenna array is an array of dipole antennas mounted in such a manner that the corresponding elements of each antenna are parallel and aligned, that is they are located along a common line or axis.

Photography

The collinearity equations are a set of two equations, used in photogrammetry and computer stereo vision, to relate coordinates in an image (sensor) plane (in two dimensions) to object coordinates (in three dimensions). In the photography setting, the equations are derived by considering the central projection of a point of the object through the optical centre of the camera to the image in the image (sensor) plane. The three points, object point, image point and optical centre, are always collinear. Another way to say this is that the line segments joining the object points with their image points are all concurrent at the optical centre.[11]

See also

Notes

  1. ^ The concept applies in any geometry Dembowski (1968, pg. 26), but is often only defined within the discussion of a specific geometry Coxeter (1969, pg. 178), Brannan, Esplen & Gray (1998, pg.106)
  2. ^ Colinear (Merriam-Webster dictionary)
  3. ^ a b Johnson, Roger A., Advanced Euclidean Geometry, Dover Publ., 2007 (orig. 1929).
  4. ^ Altshiller Court, Nathan. College Geometry, 2nd ed. Barnes & Noble, 1952 [1st ed. 1925].
  5. ^ Scott, J. A. "Some examples of the use of areal coordinates in triangle geometry", Mathematical Gazette 83, November 1999, 472–477.
  6. ^ Dušan Djukić, Vladimir Janković, Ivan Matić, Nikola Petrović, The IMO Compendium, Springer, 2006, p. 15.
  7. ^ Myakishev, Alexei (2006), "On Two Remarkable Lines Related to a Quadrilateral" (PDF), Forum Geometricorum, 6: 289–295.
  8. ^ Honsberger, Ross (1995), "4.2 Cyclic quadrilaterals", Episodes in Nineteenth and Twentieth Century Euclidean Geometry, New Mathematical Library, vol. 37, Cambridge University Press, pp. 35–39, ISBN 978-0-88385-639-0
  9. ^ Bradley, Christopher (2011), Three Centroids created by a Cyclic Quadrilateral (PDF)
  10. ^ Kock, N.; Lynn, G. S. (2012). "Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations" (PDF). Journal of the Association for Information Systems. 13 (7): 546–580. doi:10.17705/1jais.00302. S2CID 3677154.
  11. ^ It's more mathematically natural to refer to these equations as concurrency equations, but photogrammetry literature does not use that terminology.

References

Read other articles:

Leo VI Påve 928–928NamnLeoFöddokäntDöddecember 928FöreträdareJohannes XEfterträdareStefan VIIPåve i 0 år, 6 månader och 0 dagar Leo VI, född i Rom, död i december 928, var påve från maj eller juni 928 till sin död. Biografi Leo var romare och son till den romerske primicerius Christophorus, som hade varit Johannes VIII:s premiärminister. Innan Leo blev påve var han kardinalpräst med Santa Susanna som titelkyrka. Det råder viss osäkerhet om den exakta dateringen av Leos p...

 

 

2003 studio album by Don McLeanThe Western AlbumStudio album by Don McLeanReleased2003GenreRockLength40:03LabelDon McLean RecordsDon McLean chronology You've Got to Share: Songs for Children(2003) The Western Album(2003) Christmastime!(2004) Professional ratingsReview scoresSourceRatingAllmusic [1] The Western Album is an album by American singer-songwriter Don McLean, released in 2003. Track listing Timber Trail (Tim Spencer) – 3:01 Ridin' Down the Canyon (Gene Autry, S. Bu...

 

 

Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено. (серпень 2021) Збройні сили Афганістану Засновані 1709Поточна форма 2002Види зброй

Usuario en silla de ruedas entrando a una parada de autobús elevada en Curitiba, Brasil.Los productos de apoyo para la movilidad son dispositivos diseñados con el propósito de asistir al caminar o de mejorar la movilidad de las personas con discapacidad motora. Existen diferentes productos que pueden ayudar a las personas con deterioro de la habilidad para caminar, como sillas de ruedas o scooters eléctricos para discapacidades más graves o viajes más largos que de otro modo se realizar...

 

 

Pemilihan umum Bupati Pasaman Barat 20242020202927 November 2024Kandidat Peta persebaran suara Peta Sumatera Barat yang menyoroti Kabupaten Pasaman Barat Bupati petahanaHamsuardi Partai Amanat Nasional Bupati terpilih belum diketahui Sunting kotak info • L • BBantuan penggunaan templat ini Pemilihan umum Kabupaten Pasaman Barat 2024 (selanjutnya disebut Pilkada Pasaman Barat 2024 atau Pilbup Pasaman Barat 2024) dilaksanakan pada 27 November 2024 untuk memilih Bupati Pasaman Bara...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Benteng Pulau Penyengat adalah benteng yang berada di Pulau Penyengat, Kota Tanjungpinang, Kepulauan Riau, Indonesia. Nilai sejarah dari kompleks bendeng ini adalah peperangan antara Kesultanan Lingga dengan Belanda. Kegunaan seluruh benteng ini sebaga...

Bambang SukarnoBupati Temanggung 22Masa jabatan2013 – 2018PresidenSusilo Bambang YudhoyonoJoko WidodoGubernurBibit WaluyoGanjar PranowoBupati Temanggung|WakilIrawan PrasetyadiPendahuluHasyim AfandiPenggantiMuhammad Al Khadziq Informasi pribadiLahir18 Februari 1954Magelang, Jawa TengahKebangsaanIndonesiaPartai politikPDI PerjuanganSunting kotak info • L • B Drs. HM. Bambang Sukarno (lahir 18 Februari 1954) adalah bupati Temanggung yang menjabat pada periode 2013-20...

 

 

Reet SharmaReet Sharma pada 2014Lahir12 Februari 2005 (umur 18)New Delhi, IndiaKebangsaanIndiaPekerjaanArtis cilikTahun aktif2009–sekarangTinggi5 ft 0 in (1,52 m) Reet Sharma adalah seorang aktris cilik India yang biasanya berkarya dalam sinema Hindi dan sinetron. Ia telah tampil dalam film-film yakni Dabangg 2 dan Maximum Movie. Ia tampil dalam acara-acara Televisi seperti Gumrah: End of Innocence (musim 4).[1] Ia sekarang tampil dalam sinetron Star Plus Is...

 

 

Franchise of book, film, and TV series This article is about the media franchise. For other uses, see Mash (disambiguation). M*A*S*HThe fingerpost from the M*A*S*H set, as seen in the Smithsonian Institution[1]Created byRichard HookerOriginal workMASH: A Novel About Three Army Doctors (1968)Owner20th Century StudiosYears1968–1986Print publicationsNovel(s)List of novels (1968–1977)Films and televisionFilm(s)M*A*S*H (1970)Television series M*A*S*H (1972–1983) Trapper John, M.D. (1...

Genus of corals Schizocyathus D = calyx from aboveE = lateral view Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Cnidaria Class: Hexacorallia Order: Scleractinia Family: Schizocyathidae Genus: SchizocyathusPourtalès, 1874 [2] Species: S. fissilis Binomial name Schizocyathus fissilisPourtalès, 1874 [1] Schizocyathus is a monotypic genus of stony corals in the family Schizocyathidae, the only species being Schizocyathus fissilis. It is a deep water...

 

 

Unique identifier of a firearm The examples and perspective in this article may not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (November 2020) (Learn how and when to remove this template message) The serial number of this pistol is located under the dust cover on the frame, on the barrel, and on the slide. The bolt of an Arisaka military rifle, which carries identifiers matching the main...

 

 

Hajime Waki Hajime Waki (脇一, born in 1999) is a Honduran-Japanese singer-songwriter of Bachata music that gained popularity after playing and composing songs of this genre in Japanese. He is the first artist who composes mixing this three languages altogether in one song (Japanese, English, Spanish). He has a mixture of cultures there being born in Honduras and his mother being a Japanese Dominican. Biography He was born and raised in the city of Comayagua in Honduras, his father is from ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bhopal Express film – news · newspapers · books · scholar · JSTOR (November 2018) (Learn how and when to remove this template message) 1999 Indian filmBhopal ExpressDVD cover of Bhopal ExpressDirected byMahesh MathaiWritten byPrasoon PandeyPiyush PandeyPro...

 

 

おひつじ座ε星 A / Bε Arietis 星座 おひつじ座 見かけの等級 (mv) 4.63[1](5.17 / 5.57)[2] 位置元期:J2000.0 赤経 (RA, α)  02h 59m 12.7237306183s[3] 赤緯 (Dec, δ) +21° 20′ 25.541697255″[3] 視線速度 (Rv) 0.9 ± 0.9 km/s[4] 固有運動 (μ) 赤経: -14.092 ミリ秒/年[3]赤緯: -7.345 ミリ秒/年[3] 年周視差 (π) 8.5110 ± 0.3418ミリ秒[...

 

 

Wildlife and nature charity in United Kingdom The Wildlife TrustsThe Wildlife Trusts headquarters in Newark-on-TrentPredecessorThe Society for the Promotion of Nature ReservesFormation1912; 111 years ago (1912)TypeCharitable trustRegistration no.207238LocationNewark-on-Trent, Nottinghamshire, United KingdomPresidentLiz BonninChairmanDuncan IngramChief ExecutiveCraig BennettWebsitewww.wildlifetrusts.org The Wildlife Trusts, the trading name of the Royal Society of Wildli...

1936 film by Robert Zigler Leonard The Great ZiegfeldTheatrical release posterDirected byRobert Z. LeonardWritten byWilliam Anthony McGuireProduced byHunt StrombergStarringWilliam PowellMyrna LoyLuise RainerCinematographyOliver T. MarshEdited byWilliam S. GrayMusic byWalter DonaldsonLyrics:Harold AdamsonProductioncompanyMetro-Goldwyn-MayerDistributed byLoew's Inc.Release dates March 22, 1936 (1936-03-22) (Los Angeles, premiere) April 8, 1936 (1936-04-08) ...

 

 

American rapper This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: YZ rapper – news · newspapers · books · scholar · JSTOR (September 2012) (Learn how and when to remove this template message)...

 

 

Бої за Луганський аеропорт Війна на сході України Луганський аеропорт на карті боївЛуганський аеропорт на карті боїв Дата: 8 квітня — 1 вересня 2014 (146 днів) Місце: Міжнародний аеропорт «Луганськ», Луганськ, Луганська область(Переможне, Тернове, Новоганнівка, Красне) Рез...

1927 film BackstageDirected byPhil GoldstoneWritten bySarah Y. Mason Jack NattefordStarringWilliam Collier Jr. Barbara Bedford Alberta VaughnCinematographyJoseph A. Dubray E. Fox WalkerEdited byLeroy O. LodwigProductioncompanyTiffany PicturesDistributed byTiffany PicturesRelease dateApril 1, 1927Running time65 minutesCountryUnited StatesLanguagesSilent English intertitles Backstage is a 1927 American silent comedy film directed by Phil Goldstone and starring William Collier Jr., Barbara Bedfo...

 

 

Peta menggambarkan wilayah abad pertengahan termasuk Béarn Centule III dari Béarn (bahasa Prancis: Centulle III de Béarn; bahasa Latin: Centuli Gastoni) adalah seorang bangsawan Prancis, seorang vicomte di Béarn.[1] Dia adalah putra Vicomte Gaston I dari Béarn dan istrinya yang tidak diketahui namanya dalam sumber-sumber utama[2], dan putra mereka bernama Gaston II, dinamai seperti ayahandanya.[3] Centulle dibunuh oleh Lord Lupus yang Kuat. Dia kemudian digantikan...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!