Barabási–Albert model

Display of three graphs generated with the Barabasi-Albert (BA) model. Each has 20 nodes and a parameter of attachment m as specified. The color of each node is dependent upon its degree (same scale for each graph).

The Barabási–Albert (BA) model is an algorithm for generating random scale-free networks using a preferential attachment mechanism. Several natural and human-made systems, including the Internet, the World Wide Web, citation networks, and some social networks are thought to be approximately scale-free and certainly contain few nodes (called hubs) with unusually high degree as compared to the other nodes of the network. The BA model tries to explain the existence of such nodes in real networks. The algorithm is named for its inventors Albert-László Barabási and Réka Albert.

Concepts

Many observed networks (at least approximately) fall into the class of scale-free networks, meaning that they have power-law (or scale-free) degree distributions, while random graph models such as the Erdős–Rényi (ER) model and the Watts–Strogatz (WS) model do not exhibit power laws. The Barabási–Albert model is one of several proposed models that generate scale-free networks. It incorporates two important general concepts: growth and preferential attachment. Both growth and preferential attachment exist widely in real networks.

Growth means that the number of nodes in the network increases over time.

Preferential attachment means that the more connected a node is, the more likely it is to receive new links. Nodes with a higher degree have a stronger ability to grab links added to the network. Intuitively, the preferential attachment can be understood if we think in terms of social networks connecting people. Here a link from A to B means that person A "knows" or "is acquainted with" person B. Heavily linked nodes represent well-known people with lots of relations. When a newcomer enters the community, they are more likely to become acquainted with one of those more visible people rather than with a relative unknown. The BA model was proposed by assuming that in the World Wide Web, new pages link preferentially to hubs, i.e. very well known sites such as Google, rather than to pages that hardly anyone knows. If someone selects a new page to link to by randomly choosing an existing link, the probability of selecting a particular page would be proportional to its degree. The BA model claims that this explains the preferential attachment probability rule.

Later, the Bianconi–Barabási model works to address this issue by introducing a "fitness" parameter. Preferential attachment is an example of a positive feedback cycle where initially random variations (one node initially having more links or having started accumulating links earlier than another) are automatically reinforced, thus greatly magnifying differences. This is also sometimes called the Matthew effect, "the rich get richer". See also autocatalysis.

Algorithm

The steps of the growth of the network according to the Barabasi–Albert model ()

The only parameter in the BA model is , a positive integer. The network initializes with a network of nodes.

At each step, add one new node, then sample existing vertices from the network, with a probability that is proportional to the number of links that the existing nodes already have (The original papers did not specify how to handle cases where the same existing node is chosen multiple times.). Formally, the probability that the new node is connected to node is[1]

where is the degree of node and the sum is made over all pre-existing nodes (i.e. the denominator results in twice the current number of edges in the network). This step can be performed by first uniformly sampling one edge, then sampling one of the two vertices on the edge.

Heavily linked nodes ("hubs") tend to quickly accumulate even more links, while nodes with only a few links are unlikely to be chosen as the destination for a new link. The new nodes have a "preference" to attach themselves to the already heavily linked nodes.

A tree network generated according to the Barabasi-Albert model. The network is made of 50 vertices with initial degrees .

Properties

The distribution of the vertex degrees of a BA graph with 200000 nodes and 2 new edges per step. Plotted in log-log scale. It follows a power law with exponent -2.78.

The degree distribution resulting from the BA model is scale free, in particular, it is a power law of the form

Hirsch index distribution

The h-index or Hirsch index distribution was shown to also be scale free and was proposed as the lobby index, to be used as a centrality measure[2]

Furthermore, an analytic result for the density of nodes with h-index 1 can be obtained in the case where

Node degree correlations

Correlations between the degrees of connected nodes develop spontaneously in the BA model because of the way the network evolves. The probability, , of finding a link that connects a node of degree to an ancestor node of degree in the BA model for the special case of (BA tree) is given by

This confirms the existence of degree correlations, because if the distributions were uncorrelated, we would get .[1]

For general , the fraction of links who connect a node of degree to a node of degree is[3]

Also, the nearest-neighbor degree distribution , that is, the degree distribution of the neighbors of a node with degree , is given by[3]

In other words, if we select a node with degree , and then select one of its neighbors randomly, the probability that this randomly selected neighbor will have degree is given by the expression above.

Clustering coefficient

An analytical result for the clustering coefficient of the BA model was obtained by Klemm and Eguíluz[4] and proven by Bollobás.[5] A mean-field approach to study the clustering coefficient was applied by Fronczak, Fronczak and Holyst.[6]

This behavior is still distinct from the behavior of small-world networks where clustering is independent of system size. In the case of hierarchical networks, clustering as a function of node degree also follows a power-law,

This result was obtained analytically by Dorogovtsev, Goltsev and Mendes.[7]

The spectral density of BA model has a different shape from the semicircular spectral density of random graph. It has a triangle-like shape with the top lying well above the semicircle and edges decaying as a power law.[8] In [9] (Section 5.1), it was proved that the shape of this spectral density is not an exact triangular function by analyzing the moments of the spectral density as a function of the power-law exponent.

Generalized degree distribution of the BA model for
The same data is plotted in the self-similar coordinates and and it gives an excellent collapsed revealing that exhibit dynamic scaling.

By definition, the BA model describes a time developing phenomenon and hence, besides its scale-free property, one could also look for its dynamic scaling property. In the BA network nodes can also be characterized by generalized degree , the product of the square root of the birth time of each node and their corresponding degree , instead of the degree alone since the time of birth matters in the BA network. We find that the generalized degree distribution has some non-trivial features and exhibits dynamic scaling

It implies that the distinct plots of vs would collapse into a universal curve if we plot vs .[10]

Limiting cases

Model A

Model A retains growth but does not include preferential attachment. The probability of a new node connecting to any pre-existing node is equal. The resulting degree distribution in this limit is geometric,[11] indicating that growth alone is not sufficient to produce a scale-free structure.

Model B

Model B retains preferential attachment but eliminates growth. The model begins with a fixed number of disconnected nodes and adds links, preferentially choosing high degree nodes as link destinations. Though the degree distribution early in the simulation looks scale-free, the distribution is not stable, and it eventually becomes nearly Gaussian as the network nears saturation. So preferential attachment alone is not sufficient to produce a scale-free structure.

The failure of models A and B to lead to a scale-free distribution indicates that growth and preferential attachment are needed simultaneously to reproduce the stationary power-law distribution observed in real networks.[1]

Non-linear preferential attachment

The BA model can be thought of as a specific case of the more general non-linear preferential attachment (NLPA) model.[12] The NLPA algorithm is identical to the BA model with the attachment probability replaced by the more general form

where is a constant positive exponent. If , NLPA reduces to the BA model and is referred to as "linear". If , NLPA is referred to as "sub-linear" and the degree distribution of the network tends to a stretched exponential distribution. If , NLPA is referred to as "super-linear" and a small number of nodes connect to almost all other nodes in the network. For both and , the scale-free property of the network is broken in the limit of infinite system size. However, if is only slightly larger than , NLPA may result in degree distributions which appear to be transiently scale free.[13]

History

Preferential attachment made its first appearance in 1923 in the celebrated urn model of the Hungarian mathematician György Pólya in 1923.[14] The master equation method, which yields a more transparent derivation, was applied to the problem by Herbert A. Simon in 1955[15] in the course of studies of the sizes of cities and other phenomena. It was first applied to explain citation frequencies by Derek de Solla Price in 1976.[16] Price was interested in the accumulation of citations of scientific papers and the Price model used "cumulative advantage" (his name for preferential attachment) to generate a fat tailed distribution. In the language of modern citations network, Price's model produces a directed network, i.e. the version of the Barabási-Albert model. The name "preferential attachment" and the present popularity of scale-free network models is due to the work of Albert-László Barabási and Réka Albert, who discovered that a similar process is present in real networks, and applied in 1999 preferential attachment to explain the numerically observed degree distributions on the web.[17]

See also

References

  1. ^ a b c Albert, Réka; Barabási, Albert-László (2002). "Statistical mechanics of complex networks" (PDF). Reviews of Modern Physics. 74 (47): 47–97. arXiv:cond-mat/0106096. Bibcode:2002RvMP...74...47A. CiteSeerX 10.1.1.242.4753. doi:10.1103/RevModPhys.74.47. S2CID 60545. Archived from the original (PDF) on 2015-08-24.
  2. ^ Korn, A.; Schubert, A.; Telcs, A. (2009). "Lobby index in networks". Physica A. 388 (11): 2221–2226. arXiv:0809.0514. Bibcode:2009PhyA..388.2221K. doi:10.1016/j.physa.2009.02.013. S2CID 1119190.
  3. ^ a b Fotouhi, Babak; Rabbat, Michael (2013). "Degree correlation in scale-free graphs". The European Physical Journal B. 86 (12): 510. arXiv:1308.5169. Bibcode:2013EPJB...86..510F. doi:10.1140/epjb/e2013-40920-6. S2CID 7520124.
  4. ^ Klemm, K.; Eguíluz, V. C. (2002). "Growing scale-free networks with small-world behavior". Physical Review E. 65 (5): 057102. arXiv:cond-mat/0107607. Bibcode:2002PhRvE..65e7102K. doi:10.1103/PhysRevE.65.057102. hdl:10261/15314. PMID 12059755. S2CID 12945422.
  5. ^ Bollobás, B. (2003). "Mathematical results on scale-free random graphs". Handbook of Graphs and Networks. pp. 1–37. CiteSeerX 10.1.1.176.6988.
  6. ^ Fronczak, Agata; Fronczak, Piotr; Hołyst, Janusz A (2003). "Mean-field theory for clustering coefficients in Barabasi-Albert networks". Phys. Rev. E. 68 (4): 046126. arXiv:cond-mat/0306255. Bibcode:2003PhRvE..68d6126F. doi:10.1103/PhysRevE.68.046126. PMID 14683021. S2CID 2372695.
  7. ^ Dorogovtsev, S.N.; Goltsev, A.V.; Mendes, J.F.F. (25 June 2002). "Pseudofractal scale-free web". Physical Review E. 65 (6): 066122. arXiv:cond-mat/0112143. Bibcode:2002PhRvE..65f6122D. doi:10.1103/PhysRevE.65.066122. PMID 12188798. S2CID 13996254.
  8. ^ Farkas, I.J.; Derényi, I.; Barabási, A.-L.; Vicsek, T. (20 July 2001) [19 February 2001]. "Spectra of "real-world" graphs: Beyond the semicircle law". Physical Review E. 64 (2): 026704. arXiv:cond-mat/0102335. Bibcode:2001PhRvE..64b6704F. doi:10.1103/PhysRevE.64.026704. hdl:2047/d20000692. PMID 11497741. S2CID 1434432.
  9. ^ Preciado, V.M.; Rahimian, A. (December 2017). "Moment-Based Spectral Analysis of Random Graphs with a Given Expected Degree Sequence". IEEE Transactions on Network Science and Engineering. 4 (4): 215–228. arXiv:1512.03489. doi:10.1109/TNSE.2017.2712064. S2CID 12187100.
  10. ^ M. K. Hassan, M. Z. Hassan and N. I. Pavel, “Dynamic scaling, data-collapseand Self-similarity in Barabasi-Albert networks” J. Phys. A: Math. Theor. 44 175101 (2011) https://dx.doi.org/10.1088/1751-8113/44/17/175101
  11. ^ Pekoz, Erol; Rollin, A.; Ross, N. (2012). "Total variation and local limit error bounds for geometric approximation". Bernoulli. Archived from the original on 2015-09-23. Retrieved 2012-10-25.
  12. ^ Krapivsky, P. L.; Redner, S.; Leyvraz, F. (20 November 2000). "Connectivity of Growing Random Networks". Physical Review Letters. 85 (21): 4629–4632. arXiv:cond-mat/0005139. Bibcode:2000PhRvL..85.4629K. doi:10.1103/PhysRevLett.85.4629. PMID 11082613. S2CID 16251662.
  13. ^ Krapivsky, Paul; Krioukov, Dmitri (21 August 2008). "Scale-free networks as preasymptotic regimes of superlinear preferential attachment". Physical Review E. 78 (2): 026114. arXiv:0804.1366. Bibcode:2008PhRvE..78b6114K. doi:10.1103/PhysRevE.78.026114. PMID 18850904. S2CID 14292535.
  14. ^ Albert-László, Barabási (2012). "Luck or reason". Nature. 489 (7417): 507–508. doi:10.1038/nature11486. PMID 22972190. S2CID 205230706.
  15. ^ Simon, Herbert A. (December 1955). "On a Class of Skew Distribution Functions". Biometrika. 42 (3–4): 425–440. doi:10.1093/biomet/42.3-4.425.
  16. ^ Price, D.J. de Solla (September 1976). "A general theory of bibliometric and other cumulative advantage processes". Journal of the American Society for Information Science. 27 (5): 292–306. CiteSeerX 10.1.1.161.114. doi:10.1002/asi.4630270505. S2CID 8536863.
  17. ^ Barabási, Albert-László; Albert, Réka (October 1999). "Emergence of scaling in random networks" (PDF). Science. 286 (5439): 509–512. arXiv:cond-mat/9910332. Bibcode:1999Sci...286..509B. doi:10.1126/science.286.5439.509. PMID 10521342. S2CID 524106. Archived from the original (PDF) on 2012-04-17.

Read other articles:

Ini adalah daftar katedral di Haiti. Katedral Bunda Maria Dikandung Tanpa Noda di Cap-Haïtien Katedral Port-au-Prince Katolik Katedral Gereja Katolik di Haiti:[1] Katedral Santa Anna, Anse-à-Veau Katedral Bunda Maria Dikandung Tanpa Noda, Cap-Haïtien Katedral Santo Yosef, Fort-Liberté Katedral Maria Dikandung Tanpa Noda, Hinche Katedral Santo Yakobus dan Santo Filipus, Jacmel Katedral Santo Louis Raja Prancis, Jérémie Katedral Bunda Maria Diangkat ke Surga, Les Cayes Katedral Sa...

 

 

For the Band of Brothers episode, see Carentan (Band of Brothers). For the Sanctuary episode, see Carentan (Sanctuary). Delegated commune of Carentan-les-Marais in Normandy, FranceCarentanDelegated commune of Carentan-les-Marais PortLocation of Carentan CarentanShow map of FranceCarentanShow map of NormandyCoordinates: 49°18′N 1°15′W / 49.30°N 1.25°W / 49.30; -1.25CountryFranceRegionNormandyDepartmentMancheArrondissementSaint-LôCantonCarentanCommuneCarentan-le...

 

 

У этого термина существуют и другие значения, см. Пареха. МуниципалитетПарехаPareja Герб 40°33′23″ с. ш. 2°38′58″ з. д.HGЯO Страна  Испания Автономное сообщество Кастилия — Ла-Манча Провинция Гвадалахара Глава Франсиско Хавьер дель Рио Ромеро[d] История и география Пл

(آثار فلسطينية قديمة مصورة) تحتوي على وصف مبكر وجدول زمني للمراجع التاريخية لاسم فلسطين. يقدم هذا المقال قائمة من المراجع التاريخية البارزة لاسم فلسطين عبر تاريخ المنطقة. تم العثور على المصطلح «فلسط» (الذي تمت ترجمته من الكتابة الهيروغليفية باسم ف-ر-س-ط) في خمسة نقوش تشير...

 

 

Queen’s Road皇后大道 Hong Kong, China China Queen’s Road Central en su intersección con Duddell Street, ca. 1900.Datos de la rutaInauguración 1843Ubicación 22°16′51″N 114°09′22″E / 22.2808, 114.156[editar datos en Wikidata] Queen's Road es un grupo de calles situadas en la costa norte de la Isla de Hong Kong, en Hong Kong, China, dentro de los límites de Victoria. Fue la primera calle de Hong Kong, construida por los británicos entre ...

 

 

ملعب الحزب الوطني الفاشيStadio Nazionale del PNF (بالإيطالية) معلومات عامةالمنطقة الإدارية روما البلد  إيطاليا التشييد والافتتاحالمهندس المعماري Marcello Piacentini (en) الإقفال 1953 الهدم 1957 الاستعمالالرياضة كرة القدم المستضيف منتخب إيطاليا لاتحاد الرغبي المالك روما أحداث مهمة كأس العالم ...

漫画家の「さくま良子」とは別人です。 この存命人物の記事には検証可能な出典が不足しています。信頼できる情報源の提供に協力をお願いします。存命人物に関する出典の無い、もしくは不完全な情報に基づいた論争の材料、特に潜在的に中傷・誹謗・名誉毀損あるいは有害となるものはすぐに除去する必要があります。出典検索?: 佐久間良子 – ニュー...

 

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 青葉型重巡洋艦 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2023年2月) 出典は列挙するだけでなく、脚注などを用

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of Bengali films of 1987 – news · newspapers · books · scholar · JSTOR (September 2022) (Learn how and when to remove this template message) Bengali cinema 1930s 1930 1931 1932 1933 19341935 1936 1937 1938 1939 1940s 1940 1941 1942 1943 19441945 1946 1947 ...

For the Australian locality, see Torwood, Queensland. Human settlement in ScotlandTorwoodScottish Gaelic: Coille TorCottages at the south of TorwoodTorwoodLocation within the Falkirk council areaPopulation245 (2011)OS grid referenceNS 840849• Edinburgh26.8 mi (43.1 km) ESE• London349 mi (562 km) SSECivil parishDunipaceCouncil areaFalkirkLieutenancy areaStirling and FalkirkCountryScotlandSovereign stateUnited KingdomPost townLARBE...

 

 

Австралія на Олімпійських іграх Код МОК:AUS НОК:Національний олімпійськийкомітет Австралії Участь у літніх Олімпійських іграх 1896 • 1900 • 1904 • 1908—1912 • 1920 • 1924 • 1928 • 1932 • 1936 • 1948 • 1952 • 1956 • 1960 • 1964 • 1968 • 1972 • 1976 • 1980 • 1984 • 1988 • 1992 • 1996 • 2000 • 2004 • 2008 • 2012 • 2016 • 2020 Уч...

 

 

Peta Gyeongsang-do Gyeongsang atau Gyeongsang-do (Hangeul:경상도/ Hanja:慶尙道) adalah salah satu dari Delapan Provinsi di Semenanjung Korea pada zaman Dinasti Joseon. Ibu kota Provinsi Gyeongsang adalah Daegu. Daerah Gyeongsang sangat berpengaruh sejak lama di Korea dikarenakan tempat ini adalah bekas kerajaan Silla yang berhasil mempersatukan negara-negara di Semenanjung Korea. Dari daerah ini banyak lahir tokoh-tokoh politik yang berpengaruh dalam dunia modern Korea, seperti Park Chu...

For radical toryism, see Radical politics. The topic of this article may not meet Wikipedia's notability guideline for books. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: A Radical Tory – news · newspapers · books...

 

 

This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by adding missing items with reliable sources. Kelly at the 2016 Toronto International Film Festival promoting Sing Tori Kelly is an American singer-songwriter who slowly gained recognition after starting to post videos on YouTube at the age of 14. When she was 16, Kelly auditioned for the singing competition television series American Idol. After being eliminated from the show, Kelly b...

 

 

Team Bahrain Victorious2021 seasonTeam Bahrain Victorious leading the peloton on Stage 1 of the Tour of SloveniaUCI codeTBVStatusUCI WorldTeamWorld Tour Rank5thOwnerNasser bin Hamad Al KhalifaManager Milan Eržen (SLO)Based BahrainBicyclesMeridaGroupsetShimanoSeason victoriesOne-day races2Stage race overall3Stage race stages22National Championships4Most Wins Sonny Colbrelli (ITA) (10)Best ranked rider Sonny Colbre...

2000 Indian filmMaa AnnayyaDVD coverDirected byRavi Raja PinisettyStory byVikramanBased onVaanathaippola (Tamil)Produced byBellamkonda SureshSinganamala Ramesh BabuStarringDr. RajasekharMeenaMaheswariDeepti BhatnagarBrahmajiVineethMusic byS. A. RajkumarProductioncompanySRS & Sri Ganesh ProductionsRelease date1 December 2000CountryIndiaLanguageTelugu Maa Annayya (transl. Our Elder Brother) is a 2000 Indian Telugu-language drama film directed by Ravi Raja Pinisetty.[1] The fil...

 

 

Data structure for storing non-overlapping sets Disjoint-set/Union-find ForestTypemultiway treeInvented1964Invented byBernard A. Galler and Michael J. FischerTime complexity in big O notationOperation Average Worst caseSearch O(α(n))[1] (amortized) O(α(n))[1] (amortized)Insert O(1)[1] O(1)[1]Space complexitySpace O(n)[1] O(n)[1] In computer science, a disjoint-set data structure, also called a union–find data structure or merge–find set, i...

 

 

Park in Griswold, Connecticut, US Hopeville Pond State ParkBeachLocation in ConnecticutShow map of ConnecticutHopeville Pond State Park (the United States)Show map of the United StatesLocationGriswold, New London, Connecticut, United StatesCoordinates41°36′27″N 71°55′08″W / 41.60750°N 71.91889°W / 41.60750; -71.91889[1]Area554 acres (224 ha)[2]Elevation213 ft (65 m)[1]Established1938Governing bodyConnecticut Depar...

Events of 2020 in Ethiopia This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2020 in Ethiopia – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this template message) ← 2019 2018 2017 2020 in Ethiopia → 2021 2022 2023 Decades: 2000s 2010s 2020s See also:Othe...

 

 

Structural design which uses diagonal members instead of columns For the grid computing network, see DiaGrid (distributed computing network). Base of 30 St Mary Axe, London, UK The world's first diagrid hyperboloid structure in Polibino, Russia MyZeil, Frankfurt, Germany CCTV Headquarters, Beijing, China A diagrid (a portmanteau of diagonal grid) is a framework of diagonally intersecting metal, concrete, or wooden beams that is used in the construction of buildings and roofs.[1] It re...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!