Clique (graph theory)

A graph with
  • 23 × 1-vertex cliques (the vertices),
  • 42 × 2-vertex cliques (the edges),
  • 19 × 3-vertex cliques (light and dark blue triangles), and
  • 2 × 4-vertex cliques (dark blue areas).
The 11 light blue triangles form maximal cliques. The two dark blue 4-cliques are both maximum and maximal, and the clique number of the graph is 4.

In graph theory, a clique (/ˈklk/ or /ˈklɪk/) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph is an induced subgraph of that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied.

Although the study of complete subgraphs goes back at least to the graph-theoretic reformulation of Ramsey theory by Erdős & Szekeres (1935),[1] the term clique comes from Luce & Perry (1949), who used complete subgraphs in social networks to model cliques of people; that is, groups of people all of whom know each other. Cliques have many other applications in the sciences and particularly in bioinformatics.

Definitions

A clique, C, in an undirected graph G = (V, E) is a subset of the vertices, CV, such that every two distinct vertices are adjacent. This is equivalent to the condition that the induced subgraph of G induced by C is a complete graph. In some cases, the term clique may also refer to the subgraph directly.

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, that is, a clique which does not exist exclusively within the vertex set of a larger clique. Some authors define cliques in a way that requires them to be maximal, and use other terminology for complete subgraphs that are not maximal.

A maximum clique of a graph, G, is a clique, such that there is no clique with more vertices. Moreover, the clique number ω(G) of a graph G is the number of vertices in a maximum clique in G.

The intersection number of G is the smallest number of cliques that together cover all edges of G.

The clique cover number of a graph G is the smallest number of cliques of G whose union covers the set of vertices V of the graph.

A maximum clique transversal of a graph is a subset of vertices with the property that each maximum clique of the graph contains at least one vertex in the subset.[2]

The opposite of a clique is an independent set, in the sense that every clique corresponds to an independent set in the complement graph. The clique cover problem concerns finding as few cliques as possible that include every vertex in the graph.

A related concept is a biclique, a complete bipartite subgraph. The bipartite dimension of a graph is the minimum number of bicliques needed to cover all the edges of the graph.

Mathematics

Mathematical results concerning cliques include the following.

Several important classes of graphs may be defined or characterized by their cliques:

  • A cluster graph is a graph whose connected components are cliques.
  • A block graph is a graph whose biconnected components are cliques.
  • A chordal graph is a graph whose vertices can be ordered into a perfect elimination ordering, an ordering such that the neighbors of each vertex v that come later than v in the ordering form a clique.
  • A cograph is a graph all of whose induced subgraphs have the property that any maximal clique intersects any maximal independent set in a single vertex.
  • An interval graph is a graph whose maximal cliques can be ordered in such a way that, for each vertex v, the cliques containing v are consecutive in the ordering.
  • A line graph is a graph whose edges can be covered by edge-disjoint cliques in such a way that each vertex belongs to exactly two of the cliques in the cover.
  • A perfect graph is a graph in which the clique number equals the chromatic number in every induced subgraph.
  • A split graph is a graph in which some clique contains at least one endpoint of every edge.
  • A triangle-free graph is a graph that has no cliques other than its vertices and edges.

Additionally, many other mathematical constructions involve cliques in graphs. Among them,

  • The clique complex of a graph G is an abstract simplicial complex X(G) with a simplex for every clique in G
  • A simplex graph is an undirected graph κ(G) with a vertex for every clique in a graph G and an edge connecting two cliques that differ by a single vertex. It is an example of median graph, and is associated with a median algebra on the cliques of a graph: the median m(A,B,C) of three cliques A, B, and C is the clique whose vertices belong to at least two of the cliques A, B, and C.[5]
  • The clique-sum is a method for combining two graphs by merging them along a shared clique.
  • Clique-width is a notion of the complexity of a graph in terms of the minimum number of distinct vertex labels needed to build up the graph from disjoint unions, relabeling operations, and operations that connect all pairs of vertices with given labels. The graphs with clique-width one are exactly the disjoint unions of cliques.
  • The intersection number of a graph is the minimum number of cliques needed to cover all the graph's edges.
  • The clique graph of a graph is the intersection graph of its maximal cliques.

Closely related concepts to complete subgraphs are subdivisions of complete graphs and complete graph minors. In particular, Kuratowski's theorem and Wagner's theorem characterize planar graphs by forbidden complete and complete bipartite subdivisions and minors, respectively.

Computer science

In computer science, the clique problem is the computational problem of finding a maximum clique, or all cliques, in a given graph. It is NP-complete, one of Karp's 21 NP-complete problems.[6] It is also fixed-parameter intractable, and hard to approximate. Nevertheless, many algorithms for computing cliques have been developed, either running in exponential time (such as the Bron–Kerbosch algorithm) or specialized to graph families such as planar graphs or perfect graphs for which the problem can be solved in polynomial time.

Applications

The word "clique", in its graph-theoretic usage, arose from the work of Luce & Perry (1949), who used complete subgraphs to model cliques (groups of people who all know each other) in social networks. The same definition was used by Festinger (1949) in an article using less technical terms. Both works deal with uncovering cliques in a social network using matrices. For continued efforts to model social cliques graph-theoretically, see e.g. Alba (1973), Peay (1974), and Doreian & Woodard (1994).

Many different problems from bioinformatics have been modeled using cliques. For instance, Ben-Dor, Shamir & Yakhini (1999) model the problem of clustering gene expression data as one of finding the minimum number of changes needed to transform a graph describing the data into a graph formed as the disjoint union of cliques; Tanay, Sharan & Shamir (2002) discuss a similar biclustering problem for expression data in which the clusters are required to be cliques. Sugihara (1984) uses cliques to model ecological niches in food webs. Day & Sankoff (1986) describe the problem of inferring evolutionary trees as one of finding maximum cliques in a graph that has as its vertices characteristics of the species, where two vertices share an edge if there exists a perfect phylogeny combining those two characters. Samudrala & Moult (1998) model protein structure prediction as a problem of finding cliques in a graph whose vertices represent positions of subunits of the protein. And by searching for cliques in a protein–protein interaction network, Spirin & Mirny (2003) found clusters of proteins that interact closely with each other and have few interactions with proteins outside the cluster. Power graph analysis is a method for simplifying complex biological networks by finding cliques and related structures in these networks.

In electrical engineering, Prihar (1956) uses cliques to analyze communications networks, and Paull & Unger (1959) use them to design efficient circuits for computing partially specified Boolean functions. Cliques have also been used in automatic test pattern generation: a large clique in an incompatibility graph of possible faults provides a lower bound on the size of a test set.[7] Cong & Smith (1993) describe an application of cliques in finding a hierarchical partition of an electronic circuit into smaller subunits.

In chemistry, Rhodes et al. (2003) use cliques to describe chemicals in a chemical database that have a high degree of similarity with a target structure. Kuhl, Crippen & Friesen (1983) use cliques to model the positions in which two chemicals will bind to each other.

See also

Notes

  1. ^ The earlier work by Kuratowski (1930) characterizing planar graphs by forbidden complete and complete bipartite subgraphs was originally phrased in topological rather than graph-theoretic terms.
  2. ^ Chang, Kloks & Lee (2001).
  3. ^ Turán (1941).
  4. ^ Graham, Rothschild & Spencer (1990).
  5. ^ Barthélemy, Leclerc & Monjardet (1986), page 200.
  6. ^ Karp (1972).
  7. ^ Hamzaoglu & Patel (1998).

References

  • Alba, Richard D. (1973), "A graph-theoretic definition of a sociometric clique" (PDF), Journal of Mathematical Sociology, 3 (1): 113–126, doi:10.1080/0022250X.1973.9989826, archived (PDF) from the original on 2011-05-03, retrieved 2009-12-14.
  • Barthélemy, J.-P.; Leclerc, B.; Monjardet, B. (1986), "On the use of ordered sets in problems of comparison and consensus of classifications", Journal of Classification, 3 (2): 187–224, doi:10.1007/BF01894188, S2CID 6092438.
  • Ben-Dor, Amir; Shamir, Ron; Yakhini, Zohar (1999), "Clustering gene expression patterns.", Journal of Computational Biology, 6 (3–4): 281–297, CiteSeerX 10.1.1.34.5341, doi:10.1089/106652799318274, PMID 10582567.
  • Chang, Maw-Shang; Kloks, Ton; Lee, Chuan-Min (2001), "Maximum clique transversals", Graph-theoretic concepts in computer science (Boltenhagen, 2001), Lecture Notes in Comput. Sci., vol. 2204, Springer, Berlin, pp. 32–43, doi:10.1007/3-540-45477-2_5, ISBN 978-3-540-42707-0, MR 1905299.
  • Cong, J.; Smith, M. (1993), "A parallel bottom-up clustering algorithm with applications to circuit partitioning in VLSI design", Proc. 30th International Design Automation Conference, pp. 755–760, CiteSeerX 10.1.1.32.735, doi:10.1145/157485.165119, ISBN 978-0897915779, S2CID 525253.
  • Day, William H. E.; Sankoff, David (1986), "Computational complexity of inferring phylogenies by compatibility", Systematic Zoology, 35 (2): 224–229, doi:10.2307/2413432, JSTOR 2413432.
  • Doreian, Patrick; Woodard, Katherine L. (1994), "Defining and locating cores and boundaries of social networks", Social Networks, 16 (4): 267–293, doi:10.1016/0378-8733(94)90013-2.
  • Erdős, Paul; Szekeres, George (1935), "A combinatorial problem in geometry" (PDF), Compositio Mathematica, 2: 463–470, archived (PDF) from the original on 2020-05-22, retrieved 2009-12-19.
  • Festinger, Leon (1949), "The analysis of sociograms using matrix algebra", Human Relations, 2 (2): 153–158, doi:10.1177/001872674900200205, S2CID 143609308.
  • Graham, R.; Rothschild, B.; Spencer, J. H. (1990), Ramsey Theory, New York: John Wiley and Sons, ISBN 978-0-471-50046-9.
  • Hamzaoglu, I.; Patel, J. H. (1998), "Test set compaction algorithms for combinational circuits", Proc. 1998 IEEE/ACM International Conference on Computer-Aided Design, pp. 283–289, doi:10.1145/288548.288615, ISBN 978-1581130089, S2CID 12258606.
  • Karp, Richard M. (1972), "Reducibility among combinatorial problems", in Miller, R. E.; Thatcher, J. W. (eds.), Complexity of Computer Computations (PDF), New York: Plenum, pp. 85–103, archived from the original (PDF) on 2011-06-29, retrieved 2009-12-13.
  • Kuhl, F. S.; Crippen, G. M.; Friesen, D. K. (1983), "A combinatorial algorithm for calculating ligand binding", Journal of Computational Chemistry, 5 (1): 24–34, doi:10.1002/jcc.540050105, S2CID 122923018.
  • Kuratowski, Kazimierz (1930), "Sur le problème des courbes gauches en Topologie" (PDF), Fundamenta Mathematicae (in French), 15: 271–283, doi:10.4064/fm-15-1-271-283, archived (PDF) from the original on 2018-07-23, retrieved 2009-12-19.
  • Luce, R. Duncan; Perry, Albert D. (1949), "A method of matrix analysis of group structure", Psychometrika, 14 (2): 95–116, doi:10.1007/BF02289146, hdl:10.1007/BF02289146, PMID 18152948, S2CID 16186758.
  • Moon, J. W.; Moser, L. (1965), "On cliques in graphs", Israel Journal of Mathematics, 3: 23–28, doi:10.1007/BF02760024, MR 0182577.
  • Paull, M. C.; Unger, S. H. (1959), "Minimizing the number of states in incompletely specified sequential switching functions", IRE Transactions on Electronic Computers, EC-8 (3): 356–367, doi:10.1109/TEC.1959.5222697.
  • Peay, Edmund R. (1974), "Hierarchical clique structures", Sociometry, 37 (1): 54–65, doi:10.2307/2786466, JSTOR 2786466.
  • Prihar, Z. (1956), "Topological properties of telecommunications networks", Proceedings of the IRE, 44 (7): 927–933, doi:10.1109/JRPROC.1956.275149, S2CID 51654879.
  • Rhodes, Nicholas; Willett, Peter; Calvet, Alain; Dunbar, James B.; Humblet, Christine (2003), "CLIP: similarity searching of 3D databases using clique detection", Journal of Chemical Information and Computer Sciences, 43 (2): 443–448, doi:10.1021/ci025605o, PMID 12653507.
  • Samudrala, Ram; Moult, John (1998), "A graph-theoretic algorithm for comparative modeling of protein structure", Journal of Molecular Biology, 279 (1): 287–302, CiteSeerX 10.1.1.64.8918, doi:10.1006/jmbi.1998.1689, PMID 9636717.
  • Spirin, Victor; Mirny, Leonid A. (2003), "Protein complexes and functional modules in molecular networks", Proceedings of the National Academy of Sciences, 100 (21): 12123–12128, Bibcode:2003PNAS..10012123S, doi:10.1073/pnas.2032324100, PMC 218723, PMID 14517352.
  • Sugihara, George (1984), "Graph theory, homology and food webs", in Levin, Simon A. (ed.), Population Biology, Proc. Symp. Appl. Math., vol. 30, pp. 83–101.
  • Tanay, Amos; Sharan, Roded; Shamir, Ron (2002), "Discovering statistically significant biclusters in gene expression data", Bioinformatics, 18 (Suppl. 1): S136–S144, doi:10.1093/bioinformatics/18.suppl_1.S136, PMID 12169541.
  • Turán, Paul (1941), "On an extremal problem in graph theory", Matematikai és Fizikai Lapok (in Hungarian), 48: 436–452

Read other articles:

Volkswagen Golf Mk7InformasiProdusenVolkswagenMasa produksi2012–2019PerakitanWolfsburg, JermanZwickau, JermanPuebla, MeksikoBodi & rangkaKelasMobil kompakBentuk kerangkahatchback 3 pintuhatchback 5 pintuTata letakMesin depan, penggerak roda depan / penggerak 4 rodaPlatformVolkswagen Group MQBMobil terkaitAudi A3 Mk3SEAT León Mk3Škoda Octavia Mk3Penyalur dayaMesin1.2 L I4 t/c bensin1.4 L I4 t/c bensin1.6 L I4 t/c diesel2.0 L I4 t/c dieselDimensiJarak sumbu roda2.637 mm (103,8...

 

Indian TV series or programme KasturiCreated byEkta KapoorWritten byVipul MehtaSonali JaffarNishikant RoyGauri KodimalaMrinal JhaSalil SandDirected byMujammil DesaiCreative directorNivedita BasuStarringSee BelowOpening themeKasturi by Shreya GhoshalCountry of originIndiaOriginal languageHindiNo. of seasons1No. of episodes350ProductionExecutive producerTanveer AlamProducersEkta KapoorShobha KapoorCinematographySanjay K. MemaneSuhas ShirodkarRajan SinghEditorsVikas SharmaLalit TiwariSandee...

 

Fatima Moreira de Melo Thuiskomst na Olympische Zomerspelen 2008 Persoonlijke informatie Volledige naam Fatima Moreira de Melo Geboortedatum 4 juli 1978 Geboorteplaats Rotterdam Lengte 1,60 m Sportieve informatie Discipline Hockey Olympische Spelen 3 2000, 2 2004, 1 2008 Portaal    Sport Fatima Moreira de Melo World Series of Poker Bracelet(s) 0 Money finishes 9 Hoogste ITM main event finish 286ste (2015) World Poker Tour Titels 0 Finaletafels 0 Money finishes 0 European Poker Tour ...

БодрекурBaudrecourt   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Саррбур-Шато-Сален Кантон Дельм Код INSEE 57054 Поштові індекси 57580 Координати 48°57′50″ пн. ш. 6°27′09″ сх. д.H G O Висота 224 - 271 м.н.р.м. Площа 5,07 км² Населення 184 (01-2020[1]) Густота 37,08 ос....

 

село Миклаші Країна  Україна Область Хмельницька область Район Шепетівський район Громада Ямпільська селищна громада Облікова картка село Миклаші  Основні дані Населення 532 Площа 0,21 км² Густота населення 2533,33 осіб/км² Поштовий індекс 30241 Телефонний код +380 3841 ...

 

Der Titel dieses Artikels ist mehrdeutig. Zur Herrschaft siehe Seitenstetten (Herrschaft). MarktgemeindeSeitenstetten Wappen Österreichkarte Seitenstetten (Österreich) Basisdaten Staat: Österreich Bundesland: Niederösterreich Politischer Bezirk: Amstetten Kfz-Kennzeichen: AM Hauptort: Seitenstetten Markt Fläche: 30,46 km² Koordinaten: 48° 2′ N, 14° 39′ O48.03514.654166666667349Koordinaten: 48° 2′ 6″ N, 14° 39′ 15″ O ...

Interkosmos (bahasa Rusia: Интеркосмос) adalah program luar angkasa Soviet mulai April 1967 sampai tahun 1988, dirancang untuk membantu sekutu Uni Soviet dengan misi luar angkasa berawak dan tanpa awak. Program tersebut mencakup negara-negara sekutu Eropa Timur dari Pakta Warsawa, CoMEcon, dan negara-negara sosialis lainnya seperti Afghanistan, Kuba, Mongolia, dan Vietnam. Selain itu, negara-negara non-blok pro-Soviet seperti India dan Suriah berpartisipasi, dan bahkan negara-n...

 

1964 film For the Iron Maiden song, see The Number of the Beast (album). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Children of the Damned – news · newspapers · books · scholar · JSTOR (January 2013) (Learn how and when to remove this template message) Children of the DamnedTheatrical release posterDire...

 

Book by Zia Haider Rahman In the Light of What We Know AuthorZia Haider RahmanCountryUnited StatesLanguageEnglishPublisherFarrar, Straus and GirouxPublication date2014Media typePrint (Hardback & Paperback)Pages512ISBN0374175624 In the Light of What We Know AuthorZia Haider RahmanCountryUnited KingdomLanguageEnglishPublisherPicadorPublication date2014Media typePrint (Hardback & Paperback)Pages576ISBN978-1447231233 In the Light of What We Know is the first novel by Zia Haider ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Touched by an Angel season 6 – news · newspapers · books · scholar · JSTOR (April 2010) (Learn how and when to remove this template message) Season of television series Touched by an AngelSeason 6StarringRoma DowneyDella ReeseJohn DyeCountry of originUnite...

 

No. 640 Squadron RAFActive7 January 1944 – 7 May 1945Country United KingdomBranch Royal Air ForceRoleBomber SquadronPart ofNo. 4 Group, RAF Bomber Command[1]BaseRAF Leconfield, East Riding of YorkshireInsigniaSquadron CodesC8 (Jan 1944 – May 1945)[2][3]Aircraft flownBomberHandley-Page HalifaxMilitary unit No. 640 Squadron RAF was a heavy bomber squadron of the Royal Air Force during the Second World War. History No. 640 Squadron was first formed at RAF Leconfi...

 

The building in 2016 The Neilson Hays Library is a privately funded English-language library in Bangkok, Thailand. It occupies a historic building on Surawong Road in Bangkok's Bang Rak District, designed in neoclassical style by Italian architects Mario Tamagno and Giovanni Ferrero. The library traces its origins to the Bangkok Ladies' Library Association, which was established in 1869, but did not have a permanent location until the current building was commissioned in 1921 by resident Amer...

Chaire à prêcher de l'église de la Trinité de BrélévenezPrésentationType Chaire à prếcherDestination initiale Culte catholique, prédicationDestination actuelle Culte catholiqueMatériau BoisConstruction XVIIIe siècleHauteur 800 cmPropriétaire Commune de LannionPatrimonialité  Classé MH (1971)LocalisationPays  FranceDépartement Côtes-d'ArmorCommune LannionCoordonnées 48° 44′ 10″ N, 3° 27′ 31″ OLocalisation sur la car...

 

In this Chinese name, the family name is Chan (陳). Chan Yik Hei in Hong Kong Bookfair 2006 Chan Yik Hei (born 17 October 1989; Chinese: 陳易希, Jyutping: can4 yik6 hei1) is a young entrepreneur in Hong Kong. He graduated from CCC Tam Lee Lai Fun Memorial Secondary School and Hong Kong University of Science and Technology. Initial Fame In 2004, he achieved a Second Award in Engineering Category of the Intel International Science and Engineering Fair for his Total Equip, a robot for do...

 

Roman Catholic Marian movement based in Germany This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Schoenstatt Apostolic Movement – news · newspapers · books · scholar · JSTOR (October 2014) (Learn how and when to remove this template message) Apostolic Movement of Schoenstatt[1]Formation18 October...

American series of computer animated short films Dug DaysOfficial release posterGenreSlice of life ComedyCreated byBob PetersonWritten byBob PetersonDirected byBob PetersonStarringBob PetersonEd AsnerOpening themeOpening (Spirit of Adventure) by Andrea Datzman and Curtis GreenComposersAndrea DatzmanCurtis GreenCountry of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes5ProductionExecutive producersPete DocterMark NielsenProducerKim CollinsCinematographyArjun RihanJos...

 

ورد جوري النوع درامي تأليف كلوديا مارشيليان إخراج سمير حبشي بطولة نادين الراسي عمار شلق رولا حمادةرودريغ سليمانغابرييل يمين البلد  لبنان لغة العمل العربية عدد الحلقات 30 حلقة شارة البداية صلاح الكردي[1] منتج جمال سنانإيغل فيلم القناة إل بي سي آي إل دي سي ال بي سي الفض...

 

FAST när teleskopet var under uppbyggnad. 300 m belyst aperturdiameter i 500 m-skålen. FAST, eller Five hundred meter Aperture Spherical Telescope, (五百米口径球面射电望远镜) är världens största radioteleskop och finns i Guizhou i Kina. Teleskopet är byggt som en skål med en diameter på 500 meter.[1][2] Teleskopet färdigställdes 2016[3] och kommer användas i forskningen om mörk materia samt sökandet efter utomjordiskt liv[4]. Konstruktion FAST består av en ...

Questa voce sull'argomento attori statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Andreas Katsulas in Germania nel 2000 Andrew C. Andreas Katsulas (Saint Louis, 18 maggio 1946 – Los Angeles, 13 febbraio 2006) è stato un attore statunitense di origine greca. È particolarmente noto a livello internazionale per la sua interpretazione dell'ambasciatore G'Kar nella serie televisiva di fantas...

 

SouJavaCompany typeNonprofit, NGOIndustryInformation Technology and ServicesFoundedSeptember 1999 (1999-09)FoundersBruno Souza (JavaMan)Einar SaukasHeadquartersSao Paulo, BrazilWebsitehttp://soujava.org.br/ SouJava is a Brazilian Java User Group created to promote the Java programming language and other Open Source initiatives.[1] It's recognized as the world's largest Java User Group[2][3] with 40,000 members.[4][5][6] History Brazili...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!