Algebraic surface

In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold.

The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, but, in the Italian school of algebraic geometry , and are up to 100 years old.

Classification by the Kodaira dimension

In the case of dimension one, varieties are classified by only the topological genus, but, in dimension two, one needs to distinguish the arithmetic genus and the geometric genus because one cannot distinguish birationally only the topological genus. Then, irregularity is introduced for the classification of varieties. A summary of the results (in detail, for each kind of surface refers to each redirection), follows:

Examples of algebraic surfaces include (κ is the Kodaira dimension):

For more examples see the list of algebraic surfaces.

The first five examples are in fact birationally equivalent. That is, for example, a cubic surface has a function field isomorphic to that of the projective plane, being the rational functions in two indeterminates. The Cartesian product of two curves also provides examples.

Birational geometry of surfaces

The birational geometry of algebraic surfaces is rich, because of blowing up (also known as a monoidal transformation), under which a point is replaced by the curve of all limiting tangent directions coming into it (a projective line). Certain curves may also be blown down, but there is a restriction (self-intersection number must be −1).

Castelnuovo's Theorem

One of the fundamental theorems for the birational geometry of surfaces is Castelnuovo's theorem. This states that any birational map between algebraic surfaces is given by a finite sequence of blowups and blowdowns.

Properties

The Nakai criterion says that:

A Divisor D on a surface S is ample if and only if D2 > 0 and for all irreducible curve C on S D•C > 0.

Ample divisors have a nice property such as it is the pullback of some hyperplane bundle of projective space, whose properties are very well known. Let be the abelian group consisting of all the divisors on S. Then due to the intersection theorem

is viewed as a quadratic form. Let

then becomes to be a numerical equivalent class group of S and

also becomes to be a quadratic form on , where is the image of a divisor D on S. (In the below the image is abbreviated with D.)

For an ample line bundle H on S, the definition

is used in the surface version of the Hodge index theorem:

for , i.e. the restriction of the intersection form to is a negative definite quadratic form.

This theorem is proven using the Nakai criterion and the Riemann-Roch theorem for surfaces. The Hodge index theorem is used in Deligne's proof of the Weil conjecture.

Basic results on algebraic surfaces include the Hodge index theorem, and the division into five groups of birational equivalence classes called the classification of algebraic surfaces. The general type class, of Kodaira dimension 2, is very large (degree 5 or larger for a non-singular surface in P3 lies in it, for example).

There are essential three Hodge number invariants of a surface. Of those, h1,0 was classically called the irregularity and denoted by q; and h2,0 was called the geometric genus pg. The third, h1,1, is not a birational invariant, because blowing up can add whole curves, with classes in H1,1. It is known that Hodge cycles are algebraic and that algebraic equivalence coincides with homological equivalence, so that h1,1 is an upper bound for ρ, the rank of the Néron-Severi group. The arithmetic genus pa is the difference

geometric genus − irregularity.

This explains why the irregularity got its name, as a kind of 'error term'.

Riemann-Roch theorem for surfaces

The Riemann-Roch theorem for surfaces was first formulated by Max Noether. The families of curves on surfaces can be classified, in a sense, and give rise to much of their interesting geometry.

References

  • Dolgachev, I.V. (2001) [1994], "Algebraic surface", Encyclopedia of Mathematics, EMS Press
  • Zariski, Oscar (1995), Algebraic surfaces, Classics in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-58658-6, MR 1336146

Read other articles:

Huy hiệu của giáo hội Nhà thờ chính tòa Thánh Phêrô và Thánh Phaolô ở Washington, D.C. thường được gọi là Nhà thờ Chính tòa Quốc gia. Giáo hội Giám nhiệm (tiếng Anh: The Episcopal Church, viết tắt: TEC) tại Hoa Kỳ là một thành viên của Khối Hiệp thông Anh giáo. Giáo hội được cấu trúc lại theo sau Cách mạng Mỹ với việc phân ly khỏi Giáo hội Anh vốn yêu cầu giáo sĩ phải tuyên thệ Quân chủ...

 

Hindu Social group in India This article is about Hindu community of India. For Muslim community of India, Nepal, see Nat (Muslim). The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (August 2023) (Learn how and when to remove this template message) NatRegions with significant populations• IndiaLanguages• Hindi • MaithiliReligion• HinduismRelated ethnic groups• Muslim Nat

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

Southern District Recreation & Sports Assn Ltd (Hanzi: 南 區 足球 會), umumnya dikenal sebagai Southern District FC dan saat ini dikenal karena alasan sponsor sebagai Kwoon Chung Selatan , adalah klub sepak bola yang berbasis di Distrik Selatan, Hong Kong. Mereka saat ini berkompetisi di Liga Utama Hong Kong. Southern DistrictNama lengkapSouthern District Recreation & Sports Assn LtdJulukanThe AberdeenersBerdiri2002StadionAberdeen Sports Ground(Kapasitas: 4,500)PresidentMatth...

 

Telefónica S. A.JenisSociedad AnónimaIndustriLayanan telekomunikasiDidirikan25 Juli 1995KantorpusatMadrid, SpanyolIndukTelefónicaSitus webmovistar.com Movistar adalah sebuah operator telekomunikasi asal Spanyol yang dimiliki oleh Telefónica S.A.. Movistar adalah operator terbesar Spanyol dan merupakan salah satu operator di negara Republik Ceko, Jerman, Britania Raya, dan beberapa negara di Amerika Latin. Tercatat lebih dari 22 juta pengguna telekomunikasi Movistar untuk layanan suara, se...

 

Có người đề nghị hợp nhất bài viết này vào Tổ chức Đảng bộ cấp tỉnh tại Việt Nam. (Thảo luận) Việt Nam Bài này nằm trong loạt bài về:Chính trị và chính phủViệt Nam Học thuyết Tư tưởng Tập thể lãnh đạo Chủ nghĩa Marx-Lenin Tư tưởng Hồ Chí Minh Tổ chức Ban Tuyên giáo Trung ương Trưởng ban: Nguyễn Trọng Nghĩa Hội đồng Lý luận Trung ương Chủ tịch: Nguyễn Xuân Thắng Hiến pháp ...

Esta é a página de exemplos para testes de predefinições para a página de testes de Predefinição:Barra de portal. Purgue esta página para atualizar os exemplos.Se houver muitos exemplos de uma predefinição complicada, os últimos poderão deixar de funcionar devido aos limites do MediaWiki, veja o comentário HTML NewPP limit report na página renderizada.Também pode utilizar Especial:Expandir predefinições para examinar o resultado dos usos da predefinição.Pode testar como est...

 

Pour les articles homonymes, voir Blokhine. Oleg Blokhine Oleg Blokhine en 2013 Biographie Nom Oleg Vladimirovitch Blokhine Nationalité Ukrainien Naissance 5 novembre 1952 (71 ans) Kiev (RSS d'Ukraine) Taille 1,80 m (5′ 11″) Poste Ailier gauche Parcours junior Années Club 1962-1969 Dynamo Kiev Parcours senior1 AnnéesClub 0M.0(B.) 1969-1988 Dynamo Kiev 585 (269) 1988-1989 Vorwärts Steyr 045 0(10) 1989-1990 Aris Limassol 028 00(7) 1969-1990 Total 658 (286) Sélections en ...

 

愛知県 > 名古屋市 > 地名 本項名古屋市の地名(なごやしのちめい)では、愛知県名古屋市に存在する、または過去に存在した町名を行政区別に一覧化するとともに、市制及び町村制施行以降の同市内の町名の変遷について記述する。 地名の変遷 (1889年~1937年) 括弧内は、数字は発足年・消滅年、地名は「大字」の項のみ旧自治体名、それ以外は旧町・大字

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Power to Believe Tour Box – news · newspapers · books · scholar · JSTOR (May 2018) (Learn how and when to remove this template message) 2003 live album by King CrimsonThe Power To Believe Tour BoxLive album by King CrimsonReleasedFebruary 28th, 2003GenreProgressive r...

 

青森県護国神社(青森縣護國神社) 所在地 青森県弘前市下白銀町1-3位置 北緯40度36分39.9秒 東経140度27分56.9秒 / 北緯40.611083度 東経140.465806度 / 40.611083; 140.465806 (青森県護国神社)座標: 北緯40度36分39.9秒 東経140度27分56.9秒 / 北緯40.611083度 東経140.465806度 / 40.611083; 140.465806 (青森県護国神社)主祭神 青森県出身の英霊29,184柱社格等

 

Legendary creature in Persian Folklore Karkadann (from Kargadan)This folio from Walters manuscript W.659 depicts a Karkadann.GroupingLegendary creatureSimilar entitiesQilin, Re'em, Indrik, Shadhavar, Camahueto, UnicornFolkloreMedieval Persian traditionRegionIndia, Persia The Karkadann (Arabic كركدن karkadann or karkaddan from Kargadan, Persian: كرگدن) is a mythical creature said to have lived on the grassy plains of India and Persia. The word kargadan also means rhinoceros in Persia...

Michael Faraday giving his card to Father Thames, sebuah karikatur di The Times yang mengomentari mengenai kondisi Sungai Thames pada bulan Juli 1855. Bau Hebat (bahasa Inggris: The Great Stink) adalah suatu peristiwa yang terjadi pada musim panas tahun 1858 ketika bau menyengat dari limbah dan pembuangan manusia yang berasal dari Sungai Thames sangat kuat tercium di pusat kota London, Inggris. Pasokan air dan sanitasi sebelum Bau Hebat Hingga akhir abad 16, warga London menggantungkan pe...

 

Declan McKenna discographyMcKenna at The Great Escape Festival in 2018Studio albums3Music videos12EPs3Singles20 This is the discography of English singer, songwriter, and musician Declan McKenna. His debut studio album, What Do You Think About the Car?, was released in July 2017. The album peaked at number eleven on the UK Albums Chart. The album includes the singles Brazil, Paracetamol, Bethlehem, Isombard, The Kids Don't Wanna Come Home, Humongous, Why Do You Feel So Down?, Make Me Your Que...

 

Greek architect You can help expand this article with text translated from the corresponding article in Greek. (April 2014) Click [show] for important translation instructions. View a machine-translated version of the Greek article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the En...

Indian singer and music composer For the gastroenterologist, see Vijay Prakash (gastroenterologist). Vijay PrakashVijay Prakash performing at Karnatak college DharwadBorn (1976-02-21) 21 February 1976 (age 47)Mysuru, Mysuru district, Karnataka, IndiaAlma materSri Jayachamarajendra College of Engineering, Mysore, Karnataka, IndiaOccupationSingerYears active1997–present Vijay Prakash (born 21 February 1976) is an Indian Playback singer and also a Music director from Karnataka. ...

 

Francesco Sansovino Francesco Sansovino (Roma, 1521 – Venezia, 28 settembre 1583) è stato un letterato italiano. Indice 1 Biografia 1.1 Attività letteraria 2 Opere 2.1 Originali 2.2 Traduzioni 3 Note 4 Bibliografia 5 Altri progetti 6 Collegamenti esterni Biografia Nato a Roma, figlio naturale del grande architetto Jacopo Sansovino, ancora bambino seguì il padre, che si rifugiò a Venezia, mentre Roma veniva saccheggiata dai Lanzichenecchi (1527). Studiò legge a Bologna e a Padova, spost...

 

Cemetery in Hayward, Alameda County, California, US Mt. Eden CemeteryDetailsEstablished1860Location2440 Depot Road, Hayward, Alameda County, CaliforniaCountryUnited StatesCoordinates37°38′19″N 122°06′41″W / 37.63861°N 122.11139°W / 37.63861; -122.11139No. of graves>3,000WebsiteOfficial websiteFind a GraveMt. Eden Cemetery Mt. Eden Cemetery is a cemetery in Hayward, California, in the area formerly called Mt. Eden. The site was first established in 1860 a...

Future Graph, Inc.TypeGraphing softwareGenreEducational softwareFounderBob Blitshtein[1]Steve Boymel[1]Headquarters75 James WaySouthampton, Pennsylvania 18966[2]Productsf(g) ScholarRevenue$2.5 million[1] Future Graph, Inc. also known as Futuregraph was a publisher of math and science educational software used in hundreds of secondary schools and universities.[2][3][4] They are best known for f(g) Scholar, a data analysis program which fe...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Park Square Boston – news · newspapers · books · scholar · JSTOR (July 2007) (Learn how and when to remove this template message) Park Square in downtown Boston, Massachusetts, is bounded by Stuart, Charles Street South, Boylston, and Arlington Streets. ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!