600 (number)

← 599 600 601 →
Cardinalsix hundred
Ordinal600th
(six hundredth)
Factorization23 × 3 × 52
Divisors1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 600
Greek numeralΧ´
Roman numeralDC
Binary10010110002
Ternary2110203
Senary24406
Octal11308
Duodecimal42012
Hexadecimal25816
ArmenianՈ
Hebrewת"ר / ם
Babylonian cuneiform𒌋
Egyptian hieroglyph𓍧

600 (six hundred) is the natural number following 599 and preceding 601.

Mathematical properties

Six hundred is a composite number, an abundant number, a pronic number,[1] a Harshad number and a largely composite number.[2]

Credit and cars

  • In the United States, a credit score of 600 or below is considered poor, limiting available credit at a normal interest rate
  • NASCAR runs 600 advertised miles in the Coca-Cola 600, its longest race
  • The Fiat 600 is a car, the SEAT 600 its Spanish version

Integers from 601 to 699

600s

610s

620s

630s

640s

650s

660s

670s

680s

  • 680 = 23 × 5 × 17, tetrahedral number,[59] nontotient
  • 681 = 3 × 227, centered pentagonal number[3]
  • 682 = 2 × 11 × 31, sphenic number, sum of four consecutive primes (163 + 167 + 173 + 179), sum of ten consecutive primes (47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89), number of moves to solve the Norwegian puzzle strikketoy[60]
  • 683 = prime number, Sophie Germain prime,[36] sum of five consecutive primes (127 + 131 + 137 + 139 + 149), Chen prime, Eisenstein prime with no imaginary part, Wagstaff prime[61]
  • 684 = 22 × 32 × 19, Harshad number, number of graphical forest partitions of 32[62]
  • 685 = 5 × 137, centered square number[63]
  • 686 = 2 × 73, nontotient, number of multigraphs on infinite set of nodes with 7 edges[64]
  • 687 = 3 × 229, 687 days to orbit the Sun (Mars) D-number[65]
  • 688 = 24 × 43, Friedman number since 688 = 8 × 86,[20] 2-automorphic number[66]
  • 689 = 13 × 53, sum of three consecutive primes (227 + 229 + 233), sum of seven consecutive primes (83 + 89 + 97 + 101 + 103 + 107 + 109). Strobogrammatic number[67]

690s

  • 690 = 2 × 3 × 5 × 23, sum of six consecutive primes (103 + 107 + 109 + 113 + 127 + 131), sparsely totient number,[26] Smith number,[22] Harshad number
    • ISO 690 is the ISO's standard for bibliographic references
  • 691 = prime number, (negative) numerator of the Bernoulli number B12 = -691/2730. Ramanujan's tau function τ and the divisor function σ11 are related by the remarkable congruence τ(n) ≡ σ11(n) (mod 691).
    • In number theory, 691 is a "marker" (similar to the radioactive markers in biology): whenever it appears in a computation, one can be sure that Bernoulli numbers are involved.
  • 692 = 22 × 173, number of partitions of 48 into powers of 2[68]
  • 693 = 32 × 7 × 11, triangular matchstick number,[69] the number of sections in Ludwig Wittgenstein's Philosophical Investigations.
  • 694 = 2 × 347, centered triangular number,[28] nontotient, smallest pandigital number in base 5.[70]
  • 695 = 5 × 139, 695!! + 2 is prime.[71]
  • 696 = 23 × 3 × 29, sum of a twin prime (347 + 349) sum of eight consecutive primes (71 + 73 + 79 + 83 + 89 + 97 + 101 + 103), totient sum for first 47 integers, trails of length 9 on honeycomb lattice[72]
  • 697 = 17 × 41, cake number; the number of sides of Colorado[73]
  • 698 = 2 × 349, nontotient, sum of squares of two primes[74]
  • 699 = 3 × 233, D-number[65]

References

  1. ^ a b Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A067128 (Ramanujan's largely composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ a b Sloane, N. J. A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ a b Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ a b Sloane, N. J. A. (ed.). "Sequence A016038 (Strictly non-palindromic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ a b Sloane, N. J. A. (ed.). "Sequence A331452 (Triangle read by rows: T(n,m) (n >= m >= 1) = number of regions (or cells) formed by drawing the line segments connecting any two of the 2*(m+n) perimeter points of an m X n grid of squares)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A000787 (Strobogrammatic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A000045 (Fibonacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A002559 (Markoff (or Markov) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^ a b Sloane, N. J. A. (ed.). "Sequence A001606 (Indices of prime Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^ Sloane, N. J. A. (ed.). "Sequence A020492 (Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^ Sloane, N. J. A. (ed.). "Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-24.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A007597 (Strobogrammatic primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A005165 (Alternating factorials)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^ OEISA013916
  16. ^ Sloane, N. J. A. (ed.). "Sequence A006832 (Discriminants of totally real cubic fields)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^ Sloane, N. J. A. (ed.). "Sequence A027187 (Number of partitions of n into an even number of parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^ Sloane, N. J. A. (ed.). "Sequence A059377 (Jordan function J_4(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  19. ^ Sloane, N. J. A. (ed.). "Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^ a b Sloane, N. J. A. (ed.). "Sequence A036057 (Friedman numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^ Sloane, N. J. A. (ed.). "Sequence A000041 (a(n) = number of partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. ^ a b Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  24. ^ a b Sloane, N. J. A. (ed.). "Sequence A000096 (a(n) = n*(n+3)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  25. ^ Sloane, N. J. A. (ed.). "Sequence A000384 (Hexagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. ^ a b c Sloane, N. J. A. (ed.). "Sequence A036913 (Sparsely totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  27. ^ Sloane, N. J. A. (ed.). "Sequence A020492 (Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  28. ^ a b Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  29. ^ Sloane, N. J. A. (ed.). "Sequence A003215 (Hex (or centered hexagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  30. ^ Sloane, N. J. A. (ed.). "Sequence A000031 (Number of n-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple n-stage cycling shift register; also number of binary irreducible polynomials whose degree divides n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  31. ^ Sloane, N. J. A. (ed.). "Sequence A101268 (Number of compositions of n into pairwise relatively prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  32. ^ Sloane, N. J. A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  33. ^ Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  34. ^ Sloane, N. J. A. (ed.). "Sequence A051868 (16-gonal (or hexadecagonal) numbers: a(n) = n*(7*n-6))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  35. ^ Sloane, N. J. A. (ed.). "Sequence A036469 (Partial sums of A000009 (partitions into distinct parts))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  36. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A005384 (Sophie Germain primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  37. ^ a b Sloane, N. J. A. (ed.). "Sequence A080076 (Proth primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  38. ^ Sloane, N. J. A. (ed.). "Sequence A074501 (a(n) = 1^n + 2^n + 5^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  39. ^ "Sloane's A001608 : Perrin sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  40. ^ Sloane, N. J. A. (ed.). "Sequence A001567 (Fermat pseudoprimes to base 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  41. ^ Sloane, N. J. A. (ed.). "Sequence A002464 (Hertzsprung's problem: ways to arrange n non-attacking kings on an n X n board, with 1 in each row and column. Also number of permutations of length n without rising or falling successions)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  42. ^ Sloane, N. J. A. (ed.). "Sequence A057468 (Numbers k such that 3^k - 2^k is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  43. ^ Sloane, N. J. A. (ed.). "Sequence A001105 (a(n) = 2*n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  44. ^ Sloane, N. J. A. (ed.). "Sequence A071395 (Primitive abundant numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  45. ^ Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  46. ^ Sloane, N. J. A. (ed.). "Sequence A000326 (Pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  47. ^ Sloane, N. J. A. (ed.). "Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  48. ^ Sloane, N. J. A. (ed.). "Sequence A014206 (a(n) = n^2 + n + 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  49. ^ Sloane, N. J. A. (ed.). "Sequence A160160 (Toothpick sequence in the three-dimensional grid)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  50. ^ Sloane, N. J. A. (ed.). "Sequence A002379 (a(n) = floor(3^n / 2^n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  51. ^ Sloane, N. J. A. (ed.). "Sequence A027480 (a(n) = n*(n+1)*(n+2)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  52. ^ Sloane, N. J. A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  53. ^ Sloane, N. J. A. (ed.). "Sequence A108917 (Number of knapsack partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  54. ^ Sloane, N. J. A. (ed.). "Sequence A005900 (Octahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  55. ^ Sloane, N. J. A. (ed.). "Sequence A001599 (Harmonic or Ore numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  56. ^ Sloane, N. J. A. (ed.). "Sequence A316983 (Number of non-isomorphic self-dual multiset partitions of weight n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  57. ^ Sloane, N. J. A. (ed.). "Sequence A005899 (Number of points on surface of octahedron with side n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  58. ^ Sloane, N. J. A. (ed.). "Sequence A003001 (Smallest number of multiplicative persistence n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  59. ^ Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  60. ^ Sloane, N. J. A. (ed.). "Sequence A000975 (Lichtenberg sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  61. ^ Sloane, N. J. A. (ed.). "Sequence A000979 (Wagstaff primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  62. ^ Sloane, N. J. A. (ed.). "Sequence A000070 (a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  63. ^ Sloane, N. J. A. (ed.). "Sequence A001844 (Centered square numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  64. ^ Sloane, N. J. A. (ed.). "Sequence A050535 (Number of multigraphs on infinite set of nodes with n edges)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  65. ^ a b Sloane, N. J. A. (ed.). "Sequence A033553 (3-Knödel numbers or D-numbers: numbers n > 3 such that n divides k^(n-2)-k for all k with gcd(k, n) = 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  66. ^ Sloane, N. J. A. (ed.). "Sequence A030984 (2-automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-01.
  67. ^ Sloane, N. J. A. (ed.). "Sequence A000787 (Strobogrammatic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  68. ^ Sloane, N. J. A. (ed.). "Sequence A000123 (Number of binary partitions: number of partitions of 2n into powers of 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  69. ^ Sloane, N. J. A. (ed.). "Sequence A045943 (Triangular matchstick numbers: a(n) = 3*n*(n+1)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  70. ^ Sloane, N. J. A. (ed.). "Sequence A049363 (a(1) = 1; for n > 1, smallest digitally balanced number in base n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  71. ^ Sloane, N. J. A. (ed.). "Sequence A076185 (Numbers n such that n!! + 2 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  72. ^ Sloane, N. J. A. (ed.). "Sequence A006851 (Trails of length n on honeycomb lattice)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-18.
  73. ^ "Colorado is a rectangle? Think again". 23 January 2023.
  74. ^ Sloane, N. J. A. (ed.). "Sequence A045636 (Numbers of the form p^2 + q^2, with p and q primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.

Read other articles:

松阪市立第四小学校 北緯34度34分59.5秒 東経136度32分19.9秒 / 北緯34.583194度 東経136.538861度 / 34.583194; 136.538861座標: 北緯34度34分59.5秒 東経136度32分19.9秒 / 北緯34.583194度 東経136.538861度 / 34.583194; 136.538861過去の名称 松阪第四高等小学校飯南郡松阪第四尋常高等小学校松阪市第四尋常高等小学校松阪第四国民学校国公私立の別 公立学校設置者 松

 

 

Provinsi di Ekuador dengan batas berupa garis putih. Perbedaan gelap-terang sesuai dengan tingkat nilai dari Indeks Pembangunan Manusia di Ekuador. Nama-nama provinsi di Ekuador Provinsi adalah wilayah administratif tingkat satu di Ekuador. Dalam hal ini, wilayah Ekuador terbagi atas 24 provinsi (Bahasa Spanyol : provincias, tunggal - provincia). Daftar provinsi Bendera Provinsi Ibu Kota Luas (km2) Azuay Cuenca 8.189 Bolívar Guaranda 4.148 Cañar Azogues 3.669 Carchi Tulcán 3.790 Chimb...

 

 

For the old Sydney Showground located in Moore Park, see Sydney Showground (Moore Park). Arriving at the Showground during the Royal Easter Show The Sydney Showground is a purpose-built venue used each year for the Sydney Royal Easter Show. Located at Sydney Olympic Park in Sydney, New South Wales, Australia, it was opened in 1998, as a venue for the 2000 Summer Olympics and to replace the former Sydney Showground at Moore Park. Sydney Showground is operated by the Royal Agricultural Society ...

Northern Premier Football League Opgericht 1968 Land  ENG Niveaus in voetbalpiramide 7 en 8 Promotie naar National League North Degradatie naar Northern LeagueNorthern Counties East LeagueNorth West Counties LeagueMidland LeagueUnited Counties LeagueEastern Counties League Divisies Premier DivisionDivision One WestDivision One EastDivision One Midlands Aantal teams 82 Bekers FA CupFA TrophyLeague Challenge Cup Regionale competities van Engeland. De Northern Premier Football League, tegen...

 

 

Скеля «Камінь Довбуша»(пам'ятка природи) 48°10′02″ пн. ш. 25°09′27″ сх. д. / 48.167389° пн. ш. 25.15750° сх. д. / 48.167389; 25.15750Координати: 48°10′02″ пн. ш. 25°09′27″ сх. д. / 48.167389° пн. ш. 25.15750° сх. д. / 48.167389; 25.15750Країна  УкраїнаРоз...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2023) صادقين معلومات شخصية الميلاد 1930الهند الوفاة فبراير 10, 1987كراتشي مواطنة باكستان الراج البريطاني  الديانة الإسلام الحياة العملية المهنة رسام،  وشاعر ...

British Post Office's number one cat Tibs the GreatTibs in 1953Other name(s)TibsSpeciesCatSexMaleBornNovember 1950London, EnglandDiedDecember 1964LondonOccupationBritish Post Office's number one catYears active1950–1964OwnerAlf TalbutParent(s)Minnie (mother) Tibs the Great (November 1950 – December 1964) was the British Post Office's number one cat and kept the post office headquarters in London completely mouse-free during his 14 years of service. He was the son of Minnie, and on his dea...

 

 

Danau Buyan, Bali Danau Buyan adalah sebuah danau yang terletak di kawasan Desa Pancasari, Kecamatan Sukasada, Kabupaten Buleleng, Bali. Danau ini merupakan satu dari tiga danau kembar yang terbentuk di dalam sebuah kaldera besar. Ia diapit oleh dua danau lainnya, yaitu Danau Tamblingan di sebelah barat dan Danau Beratan di timur. Danau Buyan adalah yang terbesar dari ketiganya. Danau Buyan adalah danau terluas dari 3 danau yang berada di kawasan bedugul dengan luas 490 hektar dengan kedalama...

 

 

Finnish military officer This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Aladár Paasonen – news · newspapers · books · scholar · JSTOR (July 2018) (Learn how and when to remove this template message) Aladár Paasonen Colonel Aladár Antero Zoltán Béla Gyula Árpád Paasonen (December 11, 1898 in Budapest,...

Danish Jeweller The shop at Bredgade 11 in Copenhagen A. Michelsen was a leading Danish jeweller founded in 1841 by Anton Michelsen in Copenhagen. It was responsible for executing all Danish orders. It was absorbed by Georg Jensen A/S in 1985. History Anton Michelsen Anton Michelsen (1809–1877) was born 1809 in Copenhagen.[1] His family, which can be traced back to the 17th century, had for generations been metalsmiths. He completed a goldsmith's apprenticeship in Odense in 1839[...

 

 

Railway station in Satte, Saitama Prefecture, Japan Satte Station幸手駅Satte Station, 2019General informationLocation1-1-23 Naka, Satte-shi, Saitama-ken 340-0156JapanCoordinates36°04′30″N 139°42′51″E / 36.0751°N 139.7143°E / 36.0751; 139.7143Operated by Tōbu RailwayLine(s) Tōbu Nikkō LineDistance5.8 km from Tōbu-Dōbutsu-KōenPlatforms2 side platformsTracks2Other informationStation codeTN-02Websitewww.tobu.co.jp/station/info/3103.htmlHistoryOpened1 A...

 

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged,...

Adaptation of Antigone by Sophocles This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Antigone Brecht play – news · newspapers · books · scholar · JSTOR (July 2011) Antigone, also known as The Antigone of Sophocles, is an adaptation by the German dramatist Bertolt Brecht of Hölderlin's translat...

 

 

Queen of Egypt from 116-115 BC Cleopatra IVQueen of EgyptReign116–115 BCCoronation116 BCPredecessorPtolemy VIIICleopatra IIISuccessorPtolemy IXCleopatra IIICo-rulersPtolemy IXCleopatra IIISeleucid Queen (Queen Consort of Syria) Tenure114–112 BC (in opposition to queen consort Tryphaena)Coronation114 BCBornc. 138 – 135 BCDied112 BC (aged 22–26)Spouse Ptolemy IX (c. 119/118 BC–c. 115 BC) Antiochus IX (married c. 115–12 BC) Issue Ptolemy XII (possibly) Ptolemy of Cyprus (possibly) An...

 

 

Conference centre in the City of Westminster, London Queen Elizabeth II CentreAgency overviewJurisdictionUnited KingdomHeadquartersWestminster, London51°30′02″N 0°07′44″W / 51.5005°N 0.129°W / 51.5005; -0.129Minister responsibleMichael Gove, Secretary of State for Levelling Up, Housing and CommunitiesAgency executiveMark Taylor, Chief Executive OfficerParent agencyDepartment for Levelling Up, Housing and CommunitiesWebsitewww.qeiicentre.london The Queen Eli...

Збройні сили Литви Lietuvós ginkluótosios pájėgos Емблема Міністерства національної оборони Литви Прапор та емблема Збройних сил ЛитвиЗасновані 23 листопада 1918 рокуПоточна форма 25 квітня 1990 рокуВиди збройних сил Сухопутні війська Повітряні сили Військово-морські сили Сили спеціа...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Museum Perjuangan dapat mengacu pada beberapa hal berikut: Museum Perjuangan Yogyakarta Museum Perjuangan (Kodam XIII/Merdeka) Museum Monumen Perjuangan Rakyat Museum Perjuangan Bogor Museum Perjuangan TNI Museum Perjuangan Rakyat Jambi Museum Perjuang...

 

 

  لمعانٍ أخرى، طالع بارزة (توضيح). بارزة ناصفة الاسم العلميeminentia mediana hypothalami البارزة الناصفة يرمز لها ب 'ME'، في منتصف الصورة إلى الأسفل، باللون الأخضر الفاتح تفاصيل نوع من أعضاء محيطة بالبطينات  ترمينولوجيا أناتوميكا 14.1.08.409   FMA 74634  معلومات عصبية braininfo.rprc.washington.edu/S...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Museum Satwa – berita · surat kabar · buku · cendekiawan · JSTOR Museum SatwaLogo Museum SatwaLokasi Museum Satwa di Jawa TimurTampilkan peta Kota BatuMuseum Satwa (Provinsi Jawa Timur)Tampilkan peta Pro...

 

 

Tributary of Xiang River in Hunan, China Beijing–Guangzhou Railway Lei River Bridge in Hengyang The Lei River (Chinese: 耒水) is a right-bank tributary of the middle Xiang River in Hunan, China. It is also the longest tributary and has the second largest drainage system of the Xiang tributaries after the Xiao River. The Lei River has two sources: the Zhejiang River (Chinese: 浙江河), which rises in the Leishan Mountains (Chinese: 耒山) in the south of Rucheng County, and ...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!