رومان جينيوفا

رومان جينيوفا
(بالفرنسية: Romain Genevois)‏  تعديل قيمة خاصية (P1559) في ويكي بيانات
 
معلومات شخصية
الميلاد 28 أكتوبر 1987 (38 سنة)  تعديل قيمة خاصية (P569) في ويكي بيانات
إستيري  تعديل قيمة خاصية (P19) في ويكي بيانات
الطول 1.80 م (5 قدم 11 بوصة)
مركز اللعب مدافع
الجنسية فرنسا
هايتي  تعديل قيمة خاصية (P27) في ويكي بيانات
مسيرة الشباب
سنوات فريق
2000–2006 غويونيون
المسيرة الاحترافية1
سنوات فريق م. (هـ.)
2006–2009 غويونيون 33 (1)
2009–2012 تور 100 (10)
2012–2016 نيس 91 (1)
2012–2016 نيس 1 (0)
2016–2019 كاين 43 (0)
المنتخب الوطني 2
2008–2017 هايتي 10 (0)

1 عدد مرات الظهور مع الأندية وعدد الأهداف تحسب للدوري المحلي فقط وهو محدث في 6 أغسطس 2019.
2 عدد مرات الظهور مع المنتخب وعدد الأهداف محدث في 6 أغسطس 2019.

رومان جينيوفا (Romain Genevois) (28 أكتوبر 1987 في إستيري في هايتي – )؛ هو لاعب كرة قدم كان يلعب كمدافع. يلعب مع منتخب هايتي لكرة القدم منذ عام 2008.

مسيرته الكروية

لعب رومان جينيوفا خلال مسيرته الاحترافية مع 4 أندية في ثلاثة عشر موسمًا وسجل خلالها 15 هدفًا ضمن 313 مباراة. ولم يفز بأي موسم بالكأس أو بالدوري.

خاض رومان جينيوفا مسيرته مع نادي غويونيون في موسم 2006–07 واستمر معه طيلة ثلاثة مواسم، مشاركًا في 64 مباراة سجل خلالها 3 أهداف. ثم انتقل إلى نادي تور في موسم 2009–10 واستمر معه طيلة ثلاثة مواسم، حيث شارك في 101 مباراة سجل خلالها 10 أهداف. لينتقل بعدها إلى نادي نيس في موسم 2012–13 ليلعب معه أربعة مواسم، مشاركًا في 105 مباراة سجل خلالها هدفين. ثم انتقل إلى نادي كاين في موسم 2016–17 واستمر معه طيلة ثلاثة مواسم، مشاركًا في 43 مباراة ولم يسجل أي هدف.[1]

مراجع

  1. ^ "رومان جينيوفا". فرق كرة القدم الوطنية. Benjamin Strack-Zimmerman. اطلع عليه بتاريخ 2020-06-26.

وصلات خارجية

Read other articles:

Christer Sturmark Nils Gösta Christer Sturmark, born 7 September 1964 in Danderyd, Stockholm County, is a Swedish author, IT-entrepreneur and prominent debater on religion and humanism in Swedish media. He is the CEO of publishing house Fri Tanke, a Secular Humanist and former chairman of the Swedish Humanist Association, Humanisterna.[1] Career Sturmark enrolled on a master's degree in computer science at Uppsala University with the aim of starting research in artificial intelligenc...

 

Inefficient recursive sorting algorithm Stooge sortVisualization of Stooge sort (only shows swaps).ClassSorting algorithmData structureArrayWorst-case performance O ( n log ⁡ 3 / log ⁡ 1.5 ) {\displaystyle O(n^{\log 3/\log 1.5})} Worst-case space complexity O ( n ) {\displaystyle O(n)} Stooge sort is a recursive sorting algorithm. It is notable for its exceptionally bad time complexity of O ( n log ⁡ 3 / log ⁡ 1.5 ) {\displaystyle O(n^{\log 3/\log 1.5})} = O ( n 2....

 

English comedian, singer and television presenter (1932–2020) For other people named Des O'Connor, see Des O'Connor (disambiguation). Des O'ConnorCBEO'Connor performing in 1974BornDesmond Bernard O'Connor(1932-01-12)12 January 1932Stepney, London, EnglandDied14 November 2020(2020-11-14) (aged 88)Buckinghamshire, EnglandOccupations Broadcaster musician comedian Years active1954–2019TelevisionThe Des O'Connor Show (1963–1973)Des O'Connor Entertains (1974–1976)Des O'Connor Toni...

Mountain in Ross Dependency, Antarctica Adare PeninsulaAdare PeninsulaHighest pointCoordinates71°40′S 170°30′E / 71.667°S 170.500°E / -71.667; 170.500GeographyAdare PeninsulaVictoria Land, Antarctica GeologyMountain typeShield volcanoes The Adare Peninsula, sometimes called the Cape Adare Peninsula, is a high ice-covered peninsula, 40 miles (64 km) long, in the northeast part of Victoria Land, extending south from Cape Adare to Cape Roget. The peninsu...

 

Zeche Neu-Iserlohn Allgemeine Informationen zum Bergwerk Ruine der Kokerei Neu-Iserlohn Abbautechnik Pfeilerbau Förderung/Jahr max. 846.315 t Informationen zum Bergwerksunternehmen Beschäftigte bis zu 2909 Betriebsbeginn 1859 Betriebsende 1954 Nachfolgenutzung Zeche Robert Müser Geförderte Rohstoffe Abbau von Steinkohle Geographische Lage Koordinaten 51° 29′ 29,3″ N, 7° 20′ 35,8″ O51.4914717.343267Koordinaten: 51° 29′ 29,3″ N, 7...

 

Overview of the (historical) role and influence of Buddhism in Europe This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (November 2016) (Learn how and when to remove this template message) The Pagoda in the Bois de Vincennes, Paris Although there was regular contact betw...

Battle of AgrigentumPart of the Roman-Germanic warsDate456LocationAgrigentum, modern day Agrigento, SicilyResult Roman victoryBelligerents Western Roman Empire Vandal KingdomCommanders and leaders Ricimer unknownStrength Unknown UnknownCasualties and losses Unknown Unknown vteFall of the Western Roman Empire Gothic War (376–382) Save Frigidus Gildonic War Pictish War Gothic War (401–403) Asti Pollentia Verona Florence Faesulae Crossing of the Rhine Ostia Rome (410) Massilia Nervasos Mount...

 

1991 video game For the series, see Civilization (series). Civilization I redirects here. For the Kero Kero Bonito EP, see Civilisation I. 1991 video gameCivilizationBox art by Sally VitskyDeveloper(s)MicroProsePublisher(s) MicroProse Super NESJP: Asmik AceNA: KoeiPS1, SaturnJP: Asmik Ace Producer(s)Sid MeierDesigner(s)Sid Meier Bruce ShelleyProgrammer(s)Sid MeierWriter(s)B. C. Milligan Jeffery L. Briggs Bruce ShelleyComposer(s)Jeffery L. BriggsSeriesCivilizationPlatform(s)MS-DOS Amiga PC-98 ...

 

Бои за ДонбассОсновной конфликт: Гражданская война в России Дата январь — май 1919 Место Екатеринославская губерния, Область Войска Донского Итог Поражение советских армий Противники 2-й АК ВСЮРчасти Донской армии1-й Кубанский корпусСводный корпус 13-я армия8-я армия9-я арм...

For the New Zealand illustrator, cartoonist and ceramicist, see Anna Crichton. Dame Anna CrightonDNZM QSO JPCrighton in 2020BornAnna Louisa de Launey CrightonChristchurch, New ZealandAcademic backgroundAlma materUniversity of Canterbury (BA, MA)University of Otago (PhD)ThesisThe selection and presentation culture of the Robert McDougall Art Gallery, Christchurch, New Zealand, 1932–2002 (2012) Dame Anna Louisa de Launey Crighton DNZM QSO JP is a New Zealand heritage camp...

 

Busto en Ruhmeshalle Pedro Cándido o Pedro el Blanco (Brujas, 1548-Múnich, 1628) fue un pintor manierista y tapicero flamenco activo en Italia (Florencia, Roma) y Baviera. En homenaje suyo, hay una estación en el metro de Múnich (Candidplatz).[1]​[2]​ Su padre era tapicero en Flandes y su familia se mudó a Florencia. Su apellido original sería de Wit o de Witte y cambió a Candido en Italia. Según Karel van Mander, fue alumno y colaborador de Giorgio Vasari, y maestro de Jo...

 

Village in SlovakiaPorubaVillagePorubaLocation of Poruba in the Trenčín RegionShow map of Trenčín RegionPorubaLocation of Poruba in SlovakiaShow map of SlovakiaCoordinates: 48°49′N 18°35′E / 48.817°N 18.583°E / 48.817; 18.583Country SlovakiaRegionTrenčínDistrictPrievidzaFirst mentioned1339Area • Total15.14[2] km2 (5.85[2] sq mi)Elevation410[3] m (1,350[3] ft)Population (2021)&#...

Dutch motorcycle racer Rob BronRob Bron (l) and Theo Bult (1971)NationalityDutchBorn(1945-05-16)16 May 1945Amsterdam, NetherlandsDied5 October 2009(2009-10-05) (aged 64) Motorcycle racing career statistics Grand Prix motorcycle racingActive years1970 – 1973, 1976 First race1970 50cc Dutch TTLast race1976 500cc Dutch TTTeam(s)Bron teamChampionships0 Starts Wins Podiums Poles F. laps Points 12 0 5 0 0 89 Rob Bron (16 May 1945 – 5 October 2009) was a Grand Prix motorcycle road racer fro...

 

Indian Tamil-language soap opera ArundhatiGenreSoap opera mysteryWritten byP. RagavanStory byVasans Visual Ventures TeamDirected bySellaiya BalapirasanthStarring Reshmi Senthinathan Adhithiya Udhay Sekar S. Priya Shri Country of originIndiaOriginal languageTamilNo. of episodes75ProductionProducers K.S. Sinivasn S. Sharath Camera setupMulti-cameraRunning timeapprox. 20-22 minutes per episodeProduction companyVasans Visual VenturesOriginal releaseNetworkRaj TVRelease10 October 2016 (2016-1...

 

Tone poem by Jean Sibelius Spring SongTone poem by Jean SibeliusThe composer (c. 1895)Native nameVårsångOpus16Composed1894 (1894), rev. 1895PublisherFazer & Westerlund [fi] (1903)[1][a]Duration8 mins. (orig. 10 mins.)[3]PremiereDate21 June 1894 (1894-06-21)[4]LocationVaasa, Grand Duchy of FinlandConductorJean SibeliusPerformersOrchestra of the Song Festival Spring Song (in Swedish: Vårsång; in Finnis...

Chinese airline Suparna Airlines IATA ICAO Callsign Y8 YZR YANGTZE RIVER Founded15 January 2003; 20 years ago (2003-01-15)HubsShanghai–PudongFleet size25Destinations8Parent companyHainan AirlinesHeadquartersShanghai, ChinaWebsitewww.yzr.com.cn Suparna Airlines, known in Chinese as Jinpeng (Chinese: 金鹏航空; pinyin: Jīnpéng Hángkōng), is an airline based in China. It was formerly known as Yangtze River Express and later Yangtze River Airlines after launchin...

 

Clemson-class destroyer USS Hatfield (DD-231) during the 1930s. History United States NamesakeJohn Hatfield BuilderNew York Shipbuilding Corporation Laid down10 June 1918 Launched17 March 1919 Commissioned16 April 1920 Decommissioned13 January 1931 Recommissioned1 April 1932 Decommissioned28 April 1938 Recommissioned25 September 1939 ReclassifiedMiscellaneous auxiliary, AG-84, 1 October 1944 Decommissioned13 December 1946 Stricken28 January 1947 FateSold for scrap, 9 May 1...

 

1965 explosives test in Kahoolawe, HawaiiSailor Hat redirects here. For the piece of clothing, see sailor hat. Operation Sailor Hat500 short tons (454 t) of TNT (5 x 10 meter, 17 × 34 feet) awaiting detonation at Operation Sailor Hat. The USS Atlanta is visible in the background.InformationCountryUnited StatesTest site Kahoʻolawe, Hawaii San Clemente Island, California Coordinates20°30′15″N 156°40′44″W / 20.50417°N 156.67889°W / 20.50417; -156.6...

French legislative constituency 7th constituency of RéunioninlineConstituency of the National Assembly of FranceThe constituency in RéunionDeputyPerceval GaillardLFIDepartmentRéunionCantonsLes Avirons, L'Étang-Salé, Saint-Leu-1, Saint-Leu-2, Saint-Louis-1, Saint-Paul-4, Saint-Paul-5, Les Trois-BassinsRegistered voters110,968 Politics of France Political parties Elections Previous Next The 7th constituency of Réunion is a French legislative constituency on the island of Réunion. The con...

 

In mathematics, especially in the area of topology known as knot theory, an invertible knot is a knot that can be continuously deformed to itself, but with its orientation reversed. A non-invertible knot is any knot which does not have this property. The invertibility of a knot is a knot invariant. An invertible link is the link equivalent of an invertible knot. There are only five knot symmetry types, indicated by chirality and invertibility: fully chiral, reversible, positively amphichiral ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!