Robert Horton Cameron (1908 – 1989, Minnesota) adalah seorang matematikawan Amerika Serikat yang bekerja dalam bidang analisis dan teori peluang. Ia dikenal karena membuat teorema Cameron–Martin.
with Norbert Wiener: "Convergence properties of analytic functions of Fourier–Stieltjes transforms". Trans. Amer. Math. Soc. 46: 97–109. 1939. doi:10.1090/s0002-9947-1939-0000072-0. MR0000072.
with W. T. Martin: "Transformations of Wiener Integrals under Translations". Annals of Mathematics. 45 (2): 386–396. 1944. doi:10.2307/1969276. JSTOR1969276. (2nd most cited of all Cameron and Martin's papers)
with W. T. Martin: "The Wiener measure of Hilbert neighborhoods in the space of real continuous functions". J. Math. Phys. Mass. Inst. Tech. 23 (4): 195–209. 1944. doi:10.1002/sapm1944231195. MR0011174.
with W. T. Martin: "Transformations of Wiener integrals under a general class of linear transformations". Trans. Amer. Math. Soc. 58: 184–219. 1945. doi:10.1090/s0002-9947-1945-0013240-1. MR0013240.
with W. T. Martin: "Evaluation of various Wiener integrals by use of certain Sturm–Liouville differential equations". Bull. Amer. Math. Soc. 51 (2): 73–90. 1945. doi:10.1090/s0002-9904-1945-08275-5. MR0011401.
with W. T. Martin: "The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals". Annals of Mathematics. 48 (2): 385–392. 1947. doi:10.2307/1969178. JSTOR1969178. (most cited of all Cameron and Martin's papers)
with W. T. Martin: "The behavior of measure and measurability under change of scale in Wiener space". Bull. Amer. Math. Soc. 53 (2): 130–137. 1947. doi:10.1090/s0002-9904-1947-08762-0. MR0019259.
with W. T. Martin: "The transformation of Wiener integrals by nonlinear transformations". Trans. Amer. Math. Soc. 66: 253–283. 1949. doi:10.1090/s0002-9947-1949-0031196-6. MR0031196.
with C. Hatfield, Jr.: "On the summability of certain orthogonal developments of nonlinear functionals". Bull. Amer. Math. Soc. 55 (2): 130–145. 1949. doi:10.1090/s0002-9904-1949-09186-3. MR0028534.
"A "Simpson's rule" for the numerical evaluation of Wiener's integrals in function space". Duke Math. J. 18 (1): 111–130. 1951. doi:10.1215/S0012-7094-51-01810-8. MR0040589.