Read other articles:
Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...
The knockout stage of the 2003 FIFA Women's World Cup was the second and final stage of the 2003 FIFA Women's World Cup in the United States. It began on October 1, 2003, and ended with the final at the Home Depot Center, Carson, California on October 12, 2003. Germany, China, Norway, Brazil, Canada, Russia, Sweden, and defending champions United States. Canada, Germany, Sweden and the United States made it to the semi-finals. Sweden beat Canada 2–1 to reach the final, while Germany overcam...
Петрівські дуби 50°39′54″ пн. ш. 34°25′41″ сх. д. / 50.66501000002777744° пн. ш. 34.42823000002777434° сх. д. / 50.66501000002777744; 34.42823000002777434Координати: 50°39′54″ пн. ш. 34°25′41″ сх. д. / 50.66501000002777744° пн. ш. 34.42823000002777434° сх. д. / 50.66501000002777744; 34.4282300000...
КасасімарроCasasimarro Герб {{{official_name}}}ГербFlag of {{{official_name}}}ПрапорМуніципалітетКраїна ІспаніяАвтономна спільнота Кастилія-Ла-МанчаПровінція КуенкаКоординати 39°23′31″ пн. ш. 2°02′20″ зх. д. / 39.392° пн. ш. 2.039° зх. д. / 39.392; -2.039Координати: 39°23′31″...
IRT Lexington Avenue LineLayanan yang menggunakan IRT Lexington Avenue Line diberi warna hijau sejak 1979. Sistem penomoran IRT yang asli untuk jalur ini adalah 4, 5, dan 6.IkhtisarJenisJalur angkutan cepatSistemNew York City SubwayStatusBeroperasiLokasiManhattan, New York City, NYTerminus125th StreetSouth FerryStasiun27 (23 dipakai)Penumpang harian1,3 juta (sekitar 338 juta setiap tahun)OperasiDibuka27 Oktober 1904PemilikCity of New YorkOperatorNew York City Transit AuthorityRangkaianR142R14...
تحتوي هذه المقالة على قائمة المتاحف في الجزائر، وهي مرتبة حسب الولايات (مع إمكانية ترتيبها بالضغط على عناوين الأعمدة). القائمة قائمة متاحف الجزائر الولاية المتحف التصنيف الانشاء/الافتتاح معلومات صورة احداثيات م أدرار متحف المجاهد بأدرار 27°52'22.2N 0°17'06.1W [1] الشلف المتحف ...
Angkatan Laut JermanDeutsche MarineDibentuk2 Januari 1956; 67 tahun lalu (1956-01-02)Negara JermanTipe unitAngkatan LautJumlah personel16.390 personel (2021)[1]65 kapal56 pesawatBagian dariBundeswehrMarkasRostockMotoWir. Dienen. Deutschland.Kami. Melayani. Jerman.HimneGruß an Kiel [de]Pertempuran Daftar pertempuran Operasi Sharp Guard (1993–96)Operasi Enduring Freedom – Tanduk AfrikaGugus tugas gabungan 150 (2002– )Operasi Active EndeavourUNIFIL IIOperasi...
Nyonya Mayor-tituler Be Biauw Tjoan (née Tan Ndjiang Nio), Woodbury & Page, 1870 Tan Ndjiang Nio (1825–1870), atau lebih dikenal sebagai Nyonya Mayor Be Biauw Tjoan, dulu adalah seorang aristokrat Peranakan 'Cabang Atas' di Hindia Belanda (kini Indonesia).[1][2][3] Sebagai poros dari kelasnya, ia adalah istri, anak, cucu, saudara, ipar, dan mertua dari Mayor Cina Semarang.[2] Tan lahir di Semarang, Jawa Tengah pada keluarga Tionghoa terkuat di Semarang p...
Austrian gynecologist and obstetrician Johann Baptist Chiari (15 June 1817 – 11 December 1854) was an Austrian gynecologist and obstetrician born in Salzburg. In 1841 he received his medical doctorate at Vienna, where he subsequently practiced obstetrics and gynecology for most of his professional career. In 1853 he became a professor of obstetrics at the University of Prague, and for a short time worked in the Josephinum of Vienna. He died in 1854 at the age of 37 from cholera. He was the ...
1980 studio album by Ira Sullivan The Incredible Ira SullivanStudio album by Ira SullivanReleased1980RecordedJune 1980StudioLobel Studios, West New York, NJGenreJazzLength41:24LabelStashST-208ProducerBernard BrightmanIra Sullivan chronology Alive in New York(1980) The Incredible Ira Sullivan(1980) Night and Day(1981) The Incredible Ira Sullivan, (full title The Incredible Ira Sullivan Plays Flugelhorn, Trumpet, Alto and Tenor Saxes, Flute and Afuche Cabasa), is an album by multi-instrumen...
グレートブリテン王国の政治家第11代ダービー伯爵エドワード・スタンリーEdward Stanley11th Earl of Derby ヘンリー・ピッカリング画のダービー伯爵生年月日 1689年9月27日没年月日 (1776-02-22) 1776年2月22日(86歳没)死没地 グレートブリテン王国・イングランド・ランカシャー・ノーズリー(英語版)所属政党 ホイッグ党称号 第11代ダービー伯爵、第5代准男爵配偶者 シャーロッ...
Research chemist Frances Mary Gore MicklethwaitBorn1867Blackwood, Yorkshire, EnglandDied25 March 1950Alma materRoyal college of science, later known as Imperial CollegeAwardsMBE for secret wartime workScientific careerFieldsWartime research chemist Frances Mary Gore Micklethwait (1867– 25 March 1950),[1] was an English research chemist, among the first to study and seek an antidote to mustard gas during the First World War. She received an MBE for her top secret wartime work,...
Famili GPCR adhesi manusia. Anggota didefinisikan oleh struktur hibrida yang tidak biasa dengan wilayah ekstraseluler yang panjang sering mengandung protein modul yang dikenal digabungkan ke daerah transmembran tujuh rentang melalui domain GPCR-Autoproteolsis INducing (GAIN) GPCR adhesi (adhesion G protein-protein-coupled receptor) adalah kelas 33 reseptor protein manusia dengan distribusi yang luas di sel embrio dan larva, sel-sel dari saluran reproduksi, neuron, leukosit, dan berbagai tumor...
Currency of Mauritania Mauritanian ouguiyaأوقية موريتانية (Arabic) Ouguiya (French)ISO 4217CodeMRU (numeric: 929) before 2017: MRO[1]Subunit0.01UnitPluralouguiyaSymbolUMDenominationsSubunit 1⁄5khoumsBanknotes20, 50, 100, 200, 500, 1000 ouguiya[2]Coins Freq. used1, 2, 5, 10, 20 ouguiya[3] Rarely used1 khoumsDemographicsUser(s) Mauritania Sahrawi Arab Democratic RepublicIssuanceCentral bankBanque ...
Untuk kegunaan lain, lihat Filipus. Pembaptisan seorang sida-sida lukisan Rembrandt, 1626, menggambarkan Filipus dan sida-sida Etiopia. Filipus (bahasa Inggris: Philip) adalah seorang Kristen pada abad pertama Masehi di kota Yerusalem yang disebut dalam Perjanjian Baru Alkitab Kristen. Kisah Para Rasul mencatatnya sebagai satu dari tujuh pria yang dipilih dan diangkat sebagai diaken mula-mula, untuk membantu menangani urusan-urusan pastoral dan administrasi dari Gereja perdana (Kisah para...
1999 video game 1999 video gameCabela's Outdoor Trivia ChallengeDeveloper(s)Elsinore Multimedia Inc.Publisher(s)HeadGames Publishing, Inc.Platform(s)WindowsReleaseDecember 8, 1999Genre(s)Quiz Cabela's Outdoor Trivia Challenge is about testing your knowledge on subjects dealing with five categories of outdoor activities and is designed on a boardgame fashion. It was developed by Elsinore Multimedia Inc. and released December 8, 1999. The game was published by HeadGames Publishing, Inc., in con...
Member of Robin Hood's Merry Men 1912 depiction of Will Scarlet by Louis Rhead Will Scarlet (also Scarlett, Scarlock, Scadlock, Scatheloke, Scathelocke and Shacklock) is a prominent member of Robin Hood's Merry Men. He is present in the earliest ballads along with Little John and Much the Miller's Son.[1] The confusion of surnames has led some authors to distinguish them as belonging to different characters. The Elizabethan playwright Anthony Munday featured Scarlet and Scathlocke as ...
Artikel ini bukan mengenai Bragantino Clube do Pará. BragantinoNama lengkapClube Atlético BragantinoJulukanLeão (Singa)Massa Bruta (Brute Massiness) BragaBerdiri8 Januari 1928; 95 tahun lalu (1928-01-08)StadionNabi Abi Chedid,Bragança Paulista, São Paulo Brasil(Kapasitas: 21,209)Presiden Marquinho ChedidPelatih kepala Mazola JúniorLigaCampeonato Brasileiro Série B2012Campeonato Brasileiro Série B, 14th [[Perlengkapan pemain (sepak bola)|]] kandang [[Perlengkapan pemain (sepak bol...
French politician You can help expand this article with text translated from the corresponding article in French. (September 2020) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a topic to this ...
Figure 1. Finding the shortest path using optimal substructure. Numbers represent the length of the path; straight lines indicate single edges, wavy lines indicate shortest paths, i.e., there might be other vertices that are not shown here. In computer science, a problem is said to have optimal substructure if an optimal solution can be constructed from optimal solutions of its subproblems. This property is used to determine the usefulness of greedy algorithms for a problem.[1] Typica...