Dalam matematika, tepatnya pada ranah teori bilangan analitk, fungsi eta Dirichlet dapat didefiniskan menggunakan deret Dirichlet. Fungsi eta konvergen untuk setiap bilangan kompleks dengan bagian real lebih besar dari 0: η ( s ) = ∑ n = 1 ∞ ( − 1 ) n − 1 n s = 1 1 s − 1 2 s + 1 3 s − 1 4 s + ⋯ . {\displaystyle \eta (s)=\sum _{n=1}^{\infty }{(-1)^{n-1} \over n^{s}}={\frac {1}{1^{s}}}-{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}-{\frac {1}{4^{s}}}+\cdots .}