蝴蝶函数(Butterfly function)因其图形似蝴蝶而得名,蝴蝶函数由下列公式给出[1]:
h d ( x , y ) = ( x 2 − − --> y 2 ) s i n ( x + y a ) x 2 + y 2 {\displaystyle hd(x,y)={\frac {(x^{2}-y^{2})sin({\frac {x+y}{a}})}{x^{2}+y^{2}}}}
= ( x 2 − − --> y 2 ) ∗ ∗ --> ( x + y ) ∗ ∗ --> H e u n B ( 2 , 0 , 0 , 0 , ( 2 ) ∗ ∗ --> s q r t ( I ∗ ∗ --> ( x + y ) / a ) ) ( a ∗ ∗ --> e x p ( I ∗ ∗ --> ( x + y ) / a ) ∗ ∗ --> ( x 2 + y 2 ) ) {\displaystyle ={\frac {(x^{2}-y^{2})*(x+y)*HeunB(2,0,0,0,{\sqrt {(}}2)*sqrt(I*(x+y)/a))}{(a*exp(I*(x+y)/a)*(x^{2}+y^{2}))}}}
= − − --> ( 1 / 2 ∗ ∗ --> I ) ∗ ∗ --> ( x 2 − − --> y 2 ) ∗ ∗ --> W h i t t a k e r M ( 0 , 1 / 2 , ( 2 ∗ ∗ --> I ) ∗ ∗ --> ( x + y ) / a ) ( x 2 + y 2 ) {\displaystyle =-{\frac {(1/2*I)*(x^{2}-y^{2})*WhittakerM(0,1/2,(2*I)*(x+y)/a)}{(x^{2}+y^{2})}}}
= − − --> ( 1 / 2 ∗ ∗ --> I ) ∗ ∗ --> ( x 2 − − --> y 2 ) ∗ ∗ --> ( Γ Γ --> ( 1 , − − --> ( 2 ∗ ∗ --> I ) ∗ ∗ --> ( x + y ) / a ) − − --> 1 ) ( e x p ( I ∗ ∗ --> ( x + y ) / a ) ∗ ∗ --> ( x 2 + y 2 ) ) {\displaystyle ={\frac {-(1/2*I)*(x^{2}-y^{2})*(\Gamma (1,-(2*I)*(x+y)/a)-1)}{(exp(I*(x+y)/a)*(x^{2}+y^{2}))}}}
= ( 1 / 2 ) ∗ ∗ --> ( x 2 − − --> y 2 ) ∗ ∗ --> ( x + y ) ∗ ∗ --> ( π π --> ) ∗ ∗ --> ( 2 ) ∗ ∗ --> B e s s e l J ( 1 / 2 , ( x + y ) / a ) ( a ∗ ∗ --> ( ( x + y ) / a ) ∗ ∗ --> ( x 2 + y 2 ) ) {\displaystyle ={\frac {(1/2)*(x^{2}-y^{2})*(x+y)*{\sqrt {(}}\pi )*{\sqrt {(}}2)*BesselJ(1/2,(x+y)/a)}{(a*{\sqrt {(}}(x+y)/a)*(x^{2}+y^{2}))}}}
− − --> s i n ( y / a ) − − --> c o s ( y / a ) ∗ ∗ --> x / a + ( ( 1 / 2 ) ∗ ∗ --> y 2 ∗ ∗ --> s i n ( y / a ) / a 2 + 2 ∗ ∗ --> s i n ( y / a ) ) ∗ ∗ --> x 2 / y 2 + ( ( 1 / 6 ) ∗ ∗ --> y 2 ∗ ∗ --> c o s ( y / a ) / a 3 + 2 ∗ ∗ --> c o s ( y / a ) / a ) ∗ ∗ --> x 3 / y 2 + ( − − --> ( 1 / 24 ) ∗ ∗ --> y 2 ∗ ∗ --> s i n ( y / a ) / a 4 − − --> ( 1 / 2 ) ∗ ∗ --> s i n ( y / a ) / a 2 − − --> ( 1 / 2 ) ∗ ∗ --> s i n ( y / a ) ∗ ∗ --> ( y 2 + 4 ∗ ∗ --> a 2 ) / ( a 2 ∗ ∗ --> y 2 ) ) ∗ ∗ --> x 4 / y 2 + O ( x 5 ) {\displaystyle {-sin(y/a)-cos(y/a)*x/a+((1/2)*y^{2}*sin(y/a)/a^{2}+2*sin(y/a))*x^{2}/y^{2}+((1/6)*y^{2}*cos(y/a)/a^{3}+2*cos(y/a)/a)*x^{3}/y^{2}+(-(1/24)*y^{2}*sin(y/a)/a^{4}-(1/2)*sin(y/a)/a^{2}-(1/2)*sin(y/a)*(y^{2}+4*a^{2})/(a^{2}*y^{2}))*x^{4}/y^{2}+O(x^{5})}}
− − --> s i n ( ( x + y ) / a ) + 2 ∗ ∗ --> x 2 ∗ ∗ --> s i n ( ( x + y ) / a ) / y 2 − − --> 2 ∗ ∗ --> s i n ( ( x + y ) / a ) ∗ ∗ --> x 4 / y 4 + 2 ∗ ∗ --> s i n ( ( x + y ) / a ) ∗ ∗ --> x 6 / y 6 − − --> 2 ∗ ∗ --> x 8 ∗ ∗ --> s i n ( ( x + y ) / a ) / y 8 + 2 ∗ ∗ --> s i n ( ( x + y ) / a ) ∗ ∗ --> x 1 0 / y 1 0 − − --> 2 ∗ ∗ --> s i n ( ( x + y ) / a ) ∗ ∗ --> x 1 2 / y 1 2 + O ( 1 / y 1 4 ) {\displaystyle {-sin((x+y)/a)+2*x^{2}*sin((x+y)/a)/y^{2}-2*sin((x+y)/a)*x^{4}/y^{4}+2*sin((x+y)/a)*x^{6}/y^{6}-2*x^{8}*sin((x+y)/a)/y^{8}+2*sin((x+y)/a)*x^{1}0/y^{1}0-2*sin((x+y)/a)*x^{1}2/y^{1}2+O(1/y^{1}4)}}
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!