對偶性 (最佳化)

最优化理論中的對偶(duality)或對偶性原則(duality principle)是指最佳化問題可以用兩種觀點來看待的理論,兩種觀點分別是「原始問題」(primal problem)及「對偶問題」(dual problem)。對偶問題的解提供了原始問題(假設是最小化問題)的下限[1],不過一般而言,原始問題和對偶問題的最佳解不相同。兩個最佳解的差距為對偶間隙。若是凸優化問題,對偶間隙也稱為是卡鲁什-库恩-塔克条件

對偶問題

一般而言「對偶問題」是指「拉格朗日對偶問題」(Lagrangian dual problem),不過也有其他的對偶問題,例如Wolfe對偶問題英语Wolfe dual problemFenchel對偶問題英语Fenchel's duality theorem。拉格朗日對偶問題是指在最小化問題上加上拉格朗日乘数,也就是在目標函數上加上對應限制條件的非負拉格朗日乘数,再求解可將原目標函數最小的原始變數值。此解會得到以拉格朗日乘数的函數表示的原始變數,稱為是「對偶變數」(dual variables),因此,新的問題就是要衍生對偶變數的限制下(包括非負的限制條件),找到可以使目標函數最大化的對偶變數。

一般而言,給定二個對偶對英语dual pair分隔局部凸空間英语locally convex space ,以及函數,可以定義原始問題為找到使得 換句話說,若存在,是函數最小极值(minimum),也可以得到函數的最大下界(infimum)。

若有限制條件,可以整合到函數中,方式是令,其中是在上的適當函數,在限制條件上有最小值0,可以證明。後者的條件很明顯,但不一定很方便可以符合示性函数(也就是說,滿足限制條件的,在其他情形,)。因此可以將延伸為擾動函數英语perturbation function使得[2]

對偶間隙就是不等式

左側和右側的差。

其中是二個變數的凸共轭,而上确界[2][3][4]

線性規劃

线性规划問題是指损失函数約束都是線性關係最优化問題。原始問題中,目標函數是n個變數的線性組合,問題有m個約束,每一個都有上限,上限由n個變數的線性組合表示。其目的是要在滿足限制條件的情形下,最大化目標函數的值。其解是由n個值表示的向量,可以讓目標函數有最大值。

在對偶問題中,目標函數是m個值的線性組合,這些是原始問題中m個限制條件的上下限。有n個對偶限制條件,每一個的下限都是由m個對偶變數的線性組合所表示。

原始問題和對偶問題的關係

針對線性的最佳化問題,在原始問題中每一個符合限制條件的次佳點,都有一個方向(或方向的子空间),可以往目標函數增加的方向移動。若往這類的方向移動,稱為除去候選解英语candidate solution和一個或多個限制之間的鬆弛量(slack)。候選解中不可行的值即為超過一個或多個限制的值。

在對偶問題中,會將對偶向量和限制條件相乘,這些限制條件會決定原始問題中限制條件的位置。在對偶問題中變動對偶向量類似在原始問題中調整上限。要找到最小的上限。也就是說,要將對偶向量最小化,以移除限制的候選位置和實際最佳解之間的鬆弛量(slack)。對偶向量中的不可行值是指哪些太低的值。這會讓候選解的一個或多個限制條件落在排除實際最佳解的位置。

线性规划中探討對偶性的方程式中,會對上述直覺有型式化的敘述。

非線性規劃

非线性规划中的限制條件不一定是線性的,不過許多线性规划的原則還是適用。

為了確保可以簡單的識別非线性规划中的全域最大值,問題一般會要求函數要是凸函數,而且有緊緻的lower level sets。

由此可以看出卡鲁什-库恩-塔克条件的重要性。卡鲁什-库恩-塔克条件可以提供非線性規劃問題中識別局部最佳值的必要條件。也有一些額外的必要條件(約束規範,constraint qualifications)可以用來判斷可能有「最佳解」(是局部最佳解,但不一定是全域最佳解)的方式。

強拉格朗日原則:拉格朗日對偶

考慮以下形式的非線性規劃:

其定義域有非空的內部。其拉格朗日函數定義為

向量是有關此問題的「對偶變數」(dual variables)或拉格朗日乘數向量(Lagrange multiplier vectors)。拉格朗日對偶函數(Lagrange dual function)定義如下

對偶函數g是凹函數,就算初始問題不是凸也會如此,因為是仿射函數的點狀最大下界。對偶函數提供初始問題最佳值的下界:針對任意及任意,可以得到

若滿足約束規範(例如斯萊特條件英语Slater's condition),且原問題是凸,則可以得到強對偶英语strong duality

凸問題

針對有不等式限制的凸最小化問題

拉格朗日對偶問題為

其中目標函數是拉格朗日對偶函數。假設函數 and 連續可微,最大下界出現在梯度等於零的位置。問題

稱為Wolfe對偶問題。此問題用計算的方式處理可能會很困難,因為目標函數在聯合變數上不是凹。而且,一般而言,等式的限制條件也是非線性的,因此Wolfe對偶問題一般而言會不會是凸最佳化問題。不論如何,弱對偶英语weak duality會成立[5]

歷史

依照喬治·伯納德·丹齊格所述,在丹齊格提出了線性規劃問題後,约翰·冯·诺伊曼就提出了線性規劃的對偶性定理的猜想。冯·诺伊曼注意到他使用了來自其博弈论中的資訊,並且猜想兩人零和的矩陣博弈和線性規劃等效。嚴謹的證明最早是由阿尔伯特·塔克和其團隊發表(丹齊格在Nering和塔克1993年著作中的前言)

相關條目

腳註

  1. ^ Boyd, Stephen P.; Vandenberghe, Lieven. Convex Optimization (pdf). Cambridge University Press. 2004: 216 [October 15, 2011]. ISBN 978-0-521-83378-3. (原始内容存档 (PDF)于2021-05-09). 
  2. ^ 2.0 2.1 Boţ, Radu Ioan; Wanka, Gert; Grad, Sorin-Mihai. Duality in Vector Optimization. Springer. 2009. ISBN 978-3-642-02885-4. 
  3. ^ Csetnek, Ernö Robert. Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators. Logos Verlag Berlin GmbH. 2010. ISBN 978-3-8325-2503-3. 
  4. ^ Zălinescu, Constantin. Convex analysis in general vector spaces有限度免费查阅,超限则需付费订阅. River Edge, NJ: World Scientific Publishing Co., Inc. 2002: 106–113. ISBN 981-238-067-1. MR 1921556.  |issue=被忽略 (帮助)
  5. ^ Geoffrion, Arthur M. Duality in Nonlinear Programming: A Simplified Applications-Oriented Development. SIAM Review. 1971, 13 (1): 1–37. JSTOR 2028848. doi:10.1137/1013001. 

參考資料

書籍

  • Ahuja, Ravindra K.; Magnanti, Thomas L.; Orlin, James B. Network Flows: Theory, Algorithms and Applications. Prentice Hall. 1993. ISBN 0-13-617549-X. 
  • Bertsekas, Dimitri; Nedic, Angelia; Ozdaglar, Asuman. Convex Analysis and Optimization. Athena Scientific. 2003. ISBN 1-886529-45-0. 
  • Bertsekas, Dimitri P. Nonlinear Programming 2nd. Athena Scientific. 1999. ISBN 1-886529-00-0. 
  • Bertsekas, Dimitri P. Convex Optimization Theory. Athena Scientific. 2009. ISBN 978-1-886529-31-1. 
  • Bonnans, J. Frédéric; Gilbert, J. Charles; Lemaréchal, Claude; Sagastizábal, Claudia A. Numerical optimization: Theoretical and practical aspects. Universitext Second revised ed. of translation of 1997 French. Berlin: Springer-Verlag. 2006: xiv+490 [2021-05-15]. ISBN 3-540-35445-X. MR 2265882. doi:10.1007/978-3-540-35447-5. (原始内容存档于2013-07-19). 
  • Cook, William J.; Cunningham, William H.; Pulleyblank, William R.; Schrijver, Alexander. Combinatorial Optimization 1st. John Wiley & Sons. November 12, 1997. ISBN 0-471-55894-X. 
  • Dantzig, George B. Linear Programming and Extensions需要免费注册. Princeton, NJ: Princeton University Press. 1963. 
  • Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude. Convex analysis and minimization algorithms, Volume I: Fundamentals. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 305. Berlin: Springer-Verlag. 1993: xviii+417. ISBN 3-540-56850-6. MR 1261420. 
  • Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude. 14 Duality for Practitioners. Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 306. Berlin: Springer-Verlag. 1993: xviii+346. ISBN 3-540-56852-2. MR 1295240. 
  • Lasdon, Leon S. Optimization theory for large systems. Mineola, New York: Dover Publications, Inc. 2002: xiii+523 [Reprint of the 1970 Macmillan]. ISBN 978-0-486-41999-2. MR 1888251. 
  • Lawler, Eugene. 4.5. Combinatorial Implications of Max-Flow Min-Cut Theorem, 4.6. Linear Programming Interpretation of Max-Flow Min-Cut Theorem. Combinatorial Optimization: Networks and Matroids. Dover. 2001: 117–120. ISBN 0-486-41453-1. 
  • Lemaréchal, Claude. Lagrangian relaxation. Jünger, Michael; Naddef, Denis (编). Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000. Lecture Notes in Computer Science (LNCS) 2241. Berlin: Springer-Verlag. 2001: 112–156. ISBN 3-540-42877-1. MR 1900016. doi:10.1007/3-540-45586-8_4. 
  • Minoux, Michel. Mathematical programming: Theory and algorithms. Egon Balas (forward); Steven Vajda (trans) from the (1983 Paris: Dunod) French. Chichester: A Wiley-Interscience Publication. John Wiley & Sons, Ltd. 1986: xxviii+489. ISBN 0-471-90170-9. MR 0868279. (2008 Second ed., in French: Programmation mathématique : Théorie et algorithmes, Éditions Tec & Doc, Paris, 2008. xxx+711 pp. )). 
  • Nering, Evar D.; Tucker, Albert W. Linear Programming and Related Problems需要免费注册. Boston, MA: Academic Press. 1993. ISBN 978-0-12-515440-6. 
  • Papadimitriou, Christos H.; Steiglitz, Kenneth. Combinatorial Optimization : Algorithms and Complexity Unabridged. Dover. July 1998. ISBN 0-486-40258-4. 
  • Ruszczyński, Andrzej. Nonlinear Optimization. Princeton, NJ: 普林斯頓大學出版社. 2006: xii+454. ISBN 978-0691119151. MR 2199043. 

論文

Read other articles:

優勝した早稲田大学の選手たち 第44回全国大学ラグビーフットボール選手権大会は2007年(平成19年)12月16日から2008年(平成20年)1月12日にかけて開催された全国大学ラグビーフットボール選手権大会である。早稲田大学が2年振り14回目の優勝を果たした。 概要 第44回全国大学ラグビーフットボール選手権大会には、前回大会優勝校の関東学院大学が部員の不祥事により...

 

Embassy of Hungary in OttawaLocationOttawa, Ontario, CanadaAddress299 Waverley StreetCoordinates45°24′54″N 75°41′27″W / 45.414905°N 75.690892°W / 45.414905; -75.690892 The embassy in 2005 The Embassy of Hungary in Ottawa is the embassy of Hungary to Canada. It is located in the historic Birkett Castle at 306 Metcalfe Street in the Centretown neighbourhood of Ottawa, Ontario, with the main entrance via the adjacent embassy annex at 299 Waverley Street. Hunga...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2018) تيم غوللي   معلومات شخصية الميلاد 17 فبراير 1991 (العمر 32 سنة)دينسلاكن  الطول 1.84 م (6 قدم 1⁄2 بوصة) مركز اللعب وسط الجنسية ألمانيا  معلومات الناد...

Kick AndyPresenterAndy F. NoyaNegara asalIndonesiaBahasa asliBahasa IndonesiaProduksiDurasi90 menit (Minggu)Rumah produksiMedia Group Network (MetroTV)RilisJaringan asliMetro TV (2006-sekarang)Rilis asliRabu, 1 Maret 2006 –sekarangAcara terkaitBig CircleMarlo Marco The Loco BrothersPranala luarSitus web Kick Andy adalah sebuah acara televisi gelar wicara yang ditayangkan di MetroTV dan dipandu oleh Andy F. Noya. Kick Andy tayang setiap hari Minggu pukul 21:05 WIB.[1] Tema wicar...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Mei 2016. Radio-Televizija SrbijeJenistelevisiNegara SerbiaKetersediaanNasionalTanggal peluncuran1929 (radio)1958 (televisi)Situs webwww.rts.rs Radio-Televizija Srbije dibentuk tahun 1929. RTS merupakan stasiun televisi Serbia. RTS juga menyediakan berita di in...

 

Повна гетерохромія людських очей Повна гетерохромія в кота Гетерохромі́я (лат. heterochromia від грец. έτερος — «інший», «різний», χρῶμα — «колір») — різний колір райдужної оболонки правого і лівого ока або неоднакова забарвлення різних ділянок райдужної оболонки од...

دوائر النباتات الخضراء المروية في المملكة العربية السعودية ، أبريل 1997 الري في السعودية، الري هو سُقيا التربة الزراعية بالماء لسد احتياج النباتات،[1] وفي المملكة العربية السعودية من أهم طرق الري هي طريقة الري المحوري حيث أن طبيعه البلد من المناطق الجافة أي القليلة المو...

 

British Army reserve 1908–1919 For the albums, see Special Reserve (Obie Trice album) and Special Reserve (Gaelic Storm album). Special ReserveRecruitment poster for the British Army and Special ReserveActive1908–1919Country UKGBITypeArmy reserveMilitary unit The Special Reserve was established on 1 April 1908 with the function of maintaining a reservoir of manpower for the British Army and training replacement drafts in times of war. Its formation was part of the military reforms im...

 

Corregimiento in Los Santos, PanamaCambutalCorregimientoCountry PanamaProvinceLos SantosDistrictTonosíEstablishedJuly 29, 1998[1]Area[1] • Land183 km2 (71 sq mi)Population (2010)[1] • Total511 • Density2.8/km2 (7/sq mi) Population density calculated based on land area.Time zoneUTC−5 (EST) Cambutal is a corregimiento in Tonosí District, Los Santos Province, Panama with a population of 511 as of 2...

Swiss graphic designer (born 1929) Dorothea Schmid HofmannDorothea Hofmann at NID Ahmedabad, c.1965Born (1929-10-09) 9 October 1929 (age 94)Lucerne, SwitzerlandDiedJuly 26, 2023(2023-07-26) (aged 93)Other namesDorliAlma materSchule für Gestaltung BaselOccupationGraphic designerKnown forTypography and design educationNotable workDie Geburt eines Stils (The Birth of a Style)StyleSwiss graphic designMovementInternational Typographic StyleSpouse Armin Hofmann ​...

 

City in Annaba, Algeria Chetaibi Chetaïbi (Arabic: شطايبي; Berber languages: Ceṭṭaybi) (formerly Herbillon) is a small fishing port in Annaba Province, Algeria located on a peninsula west of Annaba. Geography The commune of Chetaïbi is located about 62 km northwest of the wilayah of Annaba. Chetaïbi has a fishing port. The main beaches of Chetaïbi are Chétaibi, Les sables d'or, Oued Leghnem, Fountaine Romaine, La Baie Ouest and Sidi Akkacha. The population of the town was ...

 

American singer-songwriter (born 1982) For other uses, see Ferras (disambiguation). FerrasBackground informationBirth nameFerras AlqaisiBorn (1982-07-02) July 2, 1982 (age 41)Gillespie, Illinois, U.S.OriginLos Angeles, California, U.S.GenresRocksoft rockpop rockpiano rockpopOccupation(s)Singer-songwriterInstrument(s)VocalskeyboardspianoYears active2007–presentLabelsBig 3 RecordsCapitol Records[1]EMIUnsub Records[2]WebsiteOfficial WebsiteMusical artist Ferras Alqaisi (/f...

Mehdi DehbiDehbi pada 2013Lahir5 Desember 1985 (umur 38)Liège, BelgiaPekerjaanPemeran, sutradaraTahun aktif2002-sekarangKarya terkenalLa Folle Histoire d'amour de Simon Eskenazy [fr] (He is My Girl)Le Fils de l'Autre (The Other Son)A Most Wanted ManMessiah Mehdi Dehbi (lahir 5 Desember 1985) adalah seorang pemeran dan pengarah teater Belgia, yang dikenal karena peran-perannya dalam La Folle Histoire d'amour de Simon Eskenazy [fr] (2009, judul Inggris: He i...

 

JOAI redirects here. Not to be confused with JOAY. Television station in Aomori Prefecture, JapanJOAI-DTVAomori, Aomori PrefectureJapanChannelsDigital: 30 (UHF)Virtual: 6BrandingATVProgrammingAffiliationsJapan News NetworkOwnershipOwnerAomori Television Broadcasting Co., Ltd.HistoryFoundedDecember 23, 1968First air dateDecember 1, 1969Former channel number(s)38 (analog UHF, 1969–2011)Former affiliationsAll-Nippon News Network (1970-1975)Call sign meaningAomorILinksWebsitewww.atv.jp Aomori T...

 

Airport in Harlingen, Texas Valley International AirportUSGS 2006 orthophotoIATA: HRLICAO: KHRLFAA LID: HRLSummaryAirport typePublicOwnerCity of HarlingenServesHarlingen, TexasElevation AMSL36 ft / 11 mCoordinates26°13′38″N 097°39′18″W / 26.22722°N 97.65500°W / 26.22722; -97.65500Websitewww.FlyTheValley.comMapHRLLocationShow map of TexasHRLHRL (the United States)Show map of the United StatesRunways Direction Length Surface ft m 17R/35L 8,301 ...

1944 play by Agatha Christie Murder on the NileA production of the play by the Department of Theater and Dance at Otterbein University, 1985Written byAgatha ChristieCharactersBeadsellersStewardHelen Ffoliot-ffoulkesChristina GrantSmithLouiseDr. BessnerKay MostynSimon MostynCanon PennefatherJacqueline de SeveracMcNaughtDate premiered17 January 1944Original languageEnglish Murder on the Nile (sometimes titled Hidden Horizon[1]) is a 1944 murder mystery play by crime writer Agatha Christ...

 

Zoo in Fountain Valley, California The Reptile ZooJay Brewer, the founder, at the zoo with a saltwater crocodile in 201833°41′24″N 117°57′12″W / 33.689946°N 117.953338°W / 33.689946; -117.953338Date openedJuly 10, 2009[1]LocationFountain Valley, California, United StatesFloor space13,000 square feet (1,200 m2)[1]No. of animalsOver 600[2]No. of speciesOver 100[1]OwnerJay BrewerWebsitewww.prehistoric-inc.square.site The Re...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Rosalind Plowright –&...

Jonas Green ParkThe park's Severn River shore with the Naval Academy Bridge in the distanceLocation in MarylandLocationAnnapolis, Anne Arundel, Maryland, United StatesCoordinates38°59′45″N 76°29′03″W / 38.99583°N 76.48417°W / 38.99583; -76.48417[1]Area6 acres (2.4 ha)[2]Elevation3 ft (0.91 m)[1]EstablishedUnspecifiedOperatorAnne Arundel County Department of Recreation and ParksWebsiteJonas Green Park Jonas Green Park i...

 

Canadian ice hockey player Ice hockey player Kory Karlander Born (1972-03-21) March 21, 1972 (age 51)Melita, Manitoba, CanadaHeight 6 ft 1 in (185 cm)Weight 190 lb (86 kg; 13 st 8 lb)Position CentreShot LeftPlayed for Milwaukee AdmiralsDetroit VipersGrand Rapids GriffinsMichigan K-WingsBelfast GiantsNHL Draft UndraftedPlaying career 1995–2013 Kory Karlander (born March 21, 1972) is a Canadian former professional ice hockey player who most notably ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!