AKS質數測試

AKS質數測試(又稱Agrawal–Kayal–Saxena質數測試Cyclotomic AKS test)是一個決定型質數測試演算法 ,由三個來自印度坎普爾理工學院英语Indian Institute of Technology Kanpur的計算機科學家,曼寧德拉·阿格拉瓦爾英语Manindra Agrawal尼拉吉·卡亞爾英语Neeraj Kayal尼汀·沙克謝納英语Nitin Saxena,在2002年8月6日發表於一篇題為質數屬於P的論文。[1]作者們因此獲得了許多獎項,包含了2006年的哥德爾獎和2006年的富尔克森奖。這個演算法可以在多項式時間之內,決定一個給定整數質數或者合數

重要性

AKS最關鍵的重要性在於它是第一個被發表的一般的多項式的確定性的無仰賴的質數判定算法。先前的算法至多達到了其中三點,但從未達到全部四個。

  • AKS算法可以被用於檢測任何一般的給定數字是否為質數。很多已知的高速判定算法只適用於滿足特定條件的質數。例如,卢卡斯-莱默检验法僅對梅森質數適用,而Pépin測試英语Pépin's test僅對費馬數適用。
  • 算法的最長運行時間可以被表為一個目標數字長度的多項式ECPPAPR能夠判斷一個給定數字是否為質數,但無法對所有輸入給出多項式時間範圍。
  • 算法可以確定性地判斷一個給定數字是否為質數。隨機測試演算法,例如米勒-拉宾检验Baillie–PSW,可以在多項式時間內對給定數字進行校驗,但只能給出概率性的結果。
  • AKS算法並未“仰賴”任何未證明猜想。一個反例是确定性米勒检验:該算法可以在多項式時間內對所有輸入給出確定性結果,但其正確性卻基於尚未被證明的廣義黎曼猜想

概念

AKS質數測試主要是基於以下定理:整數n (≥ 2)是質數,若且唯若

1

這個同餘多項式對所有與n互質的整數a均成立。 這個定理是費馬小定理的一般化,並且可以簡單的使用二項式定理二項式係數的這個特徵:

,對任何 ,若且唯若 n 是質數

來證明出此定理。

雖然說關係式 (1) 基本上構成了整個質數測試,但是驗證花費的時間卻是指數時間。因此,為了減少計算複雜度,AKS改為使用以下的同餘多項式:

2

這個多項式與存在多項式fg,令:

3

意義是等同的。

這個同餘式可以在多項式時間之內檢查完畢。這裡我們要注意所有的質數必定滿足此條件式(令g = 0則 (3) 等於 (1),因此符合n必定是質數)。 然而,有一些合數也會滿足這個條件式。有關AKS正確性的證明包含了推導出存在一個夠小的r以及一個夠小的整數集合A,令如果此同餘式對所有A裡面的整數都滿足,則n必定為質數。

歷史以及運算時間

在上文引用的論文的第一版本中,作者們證明了算法的漸近時間為O。換言之,算法使用少於n二進制數字長度的十二次方。但是,論文證明的時間上界卻過於寬鬆;事實上,一個被普遍相信的關於索菲熱爾曼質數分佈的假設如果為真,則會立即將最壞情況減至O

在這一發現後的幾個月中,新的變體陸續出現(Lenstra 2002, Pomerance 2002, Berrizbeitia 2003, Cheng 2003, Bernstein 2003a/b, Lenstra和Pomerance 2003)並依次提高了算法的速度(以改進幅度為序)。由於這些變體的出現,Crandall和Papadopoulos在其科學論文“AKS-類質數測試的實現”(2003年三月發表)中將其稱為算法的“AKS-類”。

出於對這些變體和其他回复的回應,論文“質數屬於P”稍後被進行了更新,新版本包括了一個AKS算法的正規公式化表述和其正確性證明。(這一版本在数学年刊上發表。)雖然基本思想沒有變化,卻被採用了新方法進行選擇,而正確性證明也變得更加緊緻有序。與舊證明依賴於許多不同的方法不同,新版本幾乎只依賴於有限域上的分圓多項式的特徵。新版本同時也優化了時間複雜度的邊界到O。通過篩法獲得的其他結果可以將其進一步簡化到O

在2005年,Carl PomeranceH. W. Lenstra, Jr.展示了一個AKS的變體,可以在次操作內完成測試(是被測試數)。對於原算法的邊界而言,這是一個顯著的改進。[2]

演算法

整個演算法的操作如下:[1]

輸入:整數 n > 1
  1. 若存在整數a > 0 且b > 1 ,令 n = ab ;則輸出合數
  2. 找出最小的 rordr(n) > log2(n).
  3. 若 對某些ar,1 < gcd(a,n) < n,輸出合數。(gcd是指最大公因數)。
  4. nr, 輸出質數
  5. a = 1 到 的所有數,
    如果 (X+a)nXn+a (mod Xr − 1,n), 輸出合數
  6. 輸出 質數

這裡的 ordr(n)是n mod r的阶。 另外,這裡的log 代表以二為底的對數,則是r歐拉函數

下面說明若n是個質數,那麼算法總是會返回質數:由於n是質數,步驟1和3永遠不會返回合數。步驟5也不會返回合數,因為(2)對所有質數n為真。因此,算法一定會在步驟4或6返回質數

對應地,如果n是合數,那麼算法一定返回合數:如果算法返回質數,那麼則一定是從步驟4或6返回。對於前者,因為nrn必然有因子ar符合1 < gcd(a,n) < n,因此會返回合數。剩餘的可能性就是步驟6,在文章[1]中,這種情況被證明不會發生,因為在步驟5中檢驗的多個等式可以確保輸出一定是合數

例子:n = 31為質數

輸入:整數n  =  31 > 1。
  1.   若存在整數a > 0 且b > 1 ,令 n  =  ab ;則輸出「合數」。
        for ( b = 2; b < =  log2(n); b +  +  ){
          a = n1/b;
          If ( a是整數 ) 輸出「合數」;
        }
        // a = n1/2...n1/4 = {5.568, 3.141, 2.360},計算結果不是整數
    
  2.   找出最小的 rordr(n) > log2(n)。
        nextR = True;
        r = 1;
        while ( nextR =  = True ) {
          r +  + ;
          nextR = False
          for ( k = 1;(!nextR) &&k ≤ log2(n); k +  +  ){
            nextR = (nk % r =  = 1 || nk % r =  = 0);
          }
        }
        // 計算結果為:r  =  29
    
  3.   若 對某些ar,1 < gcd(a,n) < n,輸出「合數」。
        for ( a = r; a > 1; a-- ){
          If ( 1 < gcd(a,n) < n ) 輸出「合數」;
        }
         
        // gcd(29,31) = 1, gcd(28,31) = 1, ..., gcd(2,31) = 1,計算結果為找不到符合的a使得1 < gcd(a,n) < n為真
    
  4. nr, 輸出「質數」。
        If ( n ≤ r ) 輸出「質數」;
         
        // 31 > 29,計算結果nr
  5. a  =  1 到 的所有數,
         如果 (X + a)nXn + a (mod Xr − 1,n), 輸出「合數」。
         
        for ( a = 1; a ≤ , a +  +  )
          if ( ((X + a)n-(Xn + a)) % (Xr−1,n) ≠ 0 ) 輸出「合數」。
        }
         
        / *  *  * 
        (x + a)31 % (x29-1,31)
          = (((x + a)29 % (x29-1,31)) * (x + a)2 % 31) % (x29-1,31)
          = ((1 + a29 + 29a28x + (406 % 31)a27x2 + (3654 % 31)a26x3 + (23751 % 31)a25x4 + (118755 % 31)a24x5 + (475020 % 31)a23x6 + (1560780 % 31)a22x7 + (4292145 % 31)a21x8 + (10015005 % 31)a20x9 + (20030010 % 31)a19x10 + (34597290 % 31)a18x11 + (51895935 % 31)a17x12 + (67863915 % 31)a16x13 + (77558760 % 31)a15x14 + (77558760 % 31)a14x15 + (67863915 % 31)a13x16 + (51895935 % 31)a12x17 + (34597290 % 31)a11x18 + (20030010 % 31)a10x19 + (10015005 % 31)a9x20 + (4292145 % 31)a8x21 + (1560780 % 31)a7x22 + (475020 % 31)a6x23 + (118755 % 31)a5x24 + (23751 % 31)a4x25 + (3654 % 31)a3x26 + (406 % 31)a2x27 + 29ax28) * (a2 + 2ax + x2)) % (x29-1,31)
          = ((1 + a29 + 29a28x + 3a27x2 + 27a26x3 + 5a25x4 + 25a24x5 + 7a23x6 + 23a22x7 + 9a21x8 + 21a20x9 + 11a19x10 + 19a18x11 + 13a17x12 + 17a16x13 + 15a15x14 + 15a14x15 + 17a13x16 + 13a12x17 + 19a11x18 + 11a10x19 + 21a9x20 + 9a8x21 + 23a7x22 + 7a6x23 +  25a5x24 + 5a4x25 + 27a3x26 + 3a2x27 + 29ax28) * (a2 + 2ax + x2)) % (x29-1,31)
          = ((1 + 2 * 29 + 3) % 31)a2 + a31 + ((2 + 29) % 31)ax + ((29 + 2 * 1) % 31)a30x + x2 + ((3 + 2 * 29 + 1) % 31)a29x2 + ((27 + 2 * 3 + 29) % 31)a28x3 + ((5 + 2 * 27 + 3) % 31)a27x4 + ((25 + 2 * 5 + 27) % 31)a26x5 + ((7 + 2 * 25 + 5) % 31)a25x6 + ((23 + 2 * 7 + 25) % 31)a24x7 + ((9 + 2 * 23 + 7) % 31)a23x8 + ((21 + 2 * 9 + 23) % 31)a22x9 + ((11 + 2 * 21 + 9) % 31)a21x10 + ((19 + 2 * 11 + 21) % 31)a20x11 + ((13 + 2 * 19 + 11) % 31)a19x12 + ((17 + 2 * 13 + 19) % 31)a18x13 + ((15 + 2 * 17 + 13) % 31)a17x14 + ((15 + 2 * 15 + 17) % 31)a16x15 + ((17 + 2 * 15 + 15) % 31)a15x16 + ((13 + 2 * 17 + 15) % 31)a14x17 + ((19 + 2 * 13 + 17) % 31)a13x18 + ((11 + 2 * 19 + 13) % 31)a12x19 + ((21 + 2 * 11 + 19) % 31)a11x20 + ((9 + 2 * 21 + 11) % 31)a10x21 + ((23 + 2 * 9 + 21) % 31)a9x22 + ((7 + 2 * 23 + 9) % 31)a8x23 + ((25 + 2 * 7 + 23) % 31)a7x24 + ((5 + 2 * 25 + 7) % 31)a6x25 + ((27 + 2 * 5 + 25) % 31)a5x26 + ((3 + 2 * 27 + 5) % 31)a4x27 + ((29 + 2 * 3 + 27) % 31)a3x28
          = a31 + x2
         
        (x31 + a) % (x29-1,31) = a + x2
         
        (a31 + x2)-(a + x2) = a31-a
         
        
         
        (131-1) % 31 = 0, (231-2) % 31 = 0, (331-3) % 31 = 0, ..., (2631-26) % 31 = 0,計算結果為找不到符合的a使得(X + a)nXn + a (mod Xr − 1,n)為真
         *  *  * /
    
  6.   輸出「質數」。
        31必為質數。
    

註釋

  1. ^ 1.0 1.1 1.2 Manindra Agrawal, Neeraj Kayal, Nitin Saxena, "PRIMES is in P页面存档备份,存于互联网档案馆)", Annals of Mathematics 160 (2004), no. 2, pp. 781–793.
  2. ^ 亨德里克·倫斯特拉 and Carl Pomerance, "Primality Testing with Gaussian Periods页面存档备份,存于互联网档案馆)", preliminary version July 20, 2005.

延伸閱讀

外部連結

Read other articles:

Catholic diocese in Ireland Diocese of Galway and KilmacduaghDioecesis Galviensis, Duacensis et FinaborensisDeoise na Gaillimhe, Chill Mhic Duaich agus Chill FhionnúrachCathedral of Our Lady Assumed into Heaven and St NicholasLocationCountryIrelandTerritoryParts of counties Mayo, Galway and ClareEcclesiastical provinceProvince of TuamMetropolitanArchdiocese of TuamStatisticsArea1,008 sq mi (2,610 km2)Population- Catholics105,707InformationDenominationRoman CatholicRiteLat...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2018)   لمعانٍ أخرى، طالع مقاطعة بولك (توضيح). مقاطعة بولك     الإحداثيات 37°37...

 

American TV series or program DuelGenreQuiz showDirected byMark GentillePresented byMike GreenbergComposerDavid VanacoreCountry of originUnited StatesNo. of seasons2No. of episodes16ProductionExecutive producersGail BermanLloyd BraunChris CowanJean-Michel MichenaudCharles DuncombeDavid RosconvalFrancis VacherRunning time≈61 minutes (Dec. 17-18)≈44 minutes (All other episodes)Production companiesRocket Science LaboratoriesFrench TVBermanBraunOriginal releaseNetworkABCReleaseDecember 1...

広島ガス株式会社HIROSHIMA GAS CO.,LTD. 本社種類 株式会社市場情報 東証プライム 95352000年3月1日上場 本社所在地 日本〒734-8555広島県広島市南区皆実町二丁目7番1号設立 1909年10月業種 電気・ガス業法人番号 2240001009205 代表者 代表取締役会長 田村興造代表取締役 社長執行役員 松藤研介資本金 51億81百万円発行済株式総数 67,998,590株売上高 連結822億円6,800万円(2019年3月)純資産

 

CikondangDesaNegara IndonesiaProvinsiJawa BaratKabupatenCianjurKecamatanCibeberKode Kemendagri32.03.03.2008 Luas264.155 HaJumlah penduduk5582Kepadatan- Air terjun Cikondang Cikondang adalah desa di kecamatan Cibeber, Cianjur, Jawa Barat, Indonesia. Pranala luar (Indonesia) Keputusan Menteri Dalam Negeri Nomor 050-145 Tahun 2022 tentang Pemberian dan Pemutakhiran Kode, Data Wilayah Administrasi Pemerintahan, dan Pulau tahun 2021 (Indonesia) Peraturan Menteri Dalam Negeri Nomor 72 Tahun 20...

 

Politics of Kenya National Government Constitution History Human rights LGBT rights Executive President (list) William Ruto Deputy President Rigathi Gachagua Cabinet Prime Cabinet Secretary Musalia Mudavadi Attorney General Justin Muturi Director of Public Prosecutions Renson M. Ingonga Legislature National Assembly Speaker: Moses Wetangula List of members Constituencies Senate Speaker: Amason Kingi List of members Judiciary Chief Justice Martha Koome Deputy Chief Justice Philomena Mwilu Supr...

العلاقات الأذربيجانية الرومانية أذربيجان رومانيا   أذربيجان   رومانيا تعديل مصدري - تعديل   العلاقات الأذربيجانية الرومانية هي العلاقات الثنائية التي تجمع بين أذربيجان ورومانيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتي

 

2004 American filmSniper 3Official DVD coverDirected byP.J. PesceWritten by J.S. Cardone Ross Helford Based onCharactersby Michael Frost BecknerCrash LeylandProduced by Carol Kottenbrook Scott Einbinder Starring Tom Berenger Byron Mann Denis Arndt John Doman CinematographyMichael BonvillainEdited byAmanda I. KirpaulMusic byTim JonesProductioncompanies Sandstorm Films Destination Films Distributed byColumbia TriStar Home EntertainmentRelease date September 28, 2004 (2004-09-28) ...

 

Веселе Країна  Україна УкраїнаАдмінодиниця Грем'яцька сільська радаЧасовий пояс UTC+2Телефонний код 4658 (Грем'яцька сільська рада) У Вікіпедії є статті про інші значення цього терміна: Веселе. Веселе — колишнє село в Україні, Новгород-Сіверському районі Черніг...

Халчайцький ВіталійЗагальна інформаціяНародження 22 серпня 1964 (59 років)(19640822)СпортВид спорту водне поло Участь і здобутки Віталій Халчайцький (нар. 22 серпня 1964) — український гравець у водне поло. Він брав участь у турнірі серед чоловіків на літніх Олімпійських і...

 

Euroregion in Western Europe SaarLorLuxSaar–Lor–LuxSarLorLux Emblem Location and extent of the Greater Region of SaarLorLux in western Europe.TypeEuroregionMembership Saarland Lorraine Moselle Meurthe-et-Moselle Luxembourg Wallonia Communauté française Deutschsprachige Gemeinschaft Rhineland-Palatinate Establishment16 October 1980Area• Total65,400 km2 (25,300 sq mi)Population• 2019 estimate11,639,225• Density173/km2 (448.1/sq mi)CurrencyEuro (EUR...

 

British-bred Thoroughbred racehorse Harbour LawRacing silks of Jackie CornwellSireLawmanGrandsireInvincible SpiritDamAbunaiDamsirePivotalSexStallionFoaled30 March 2013[1]CountryIrelandColourBayBreederHascombe and Valiant StudsOwnerJackie Cornwell, Daniel Danny LeeTrainerJo CrowleyLaura MonganRecord8: 3-2-1Earnings£474,481Major winsSt Leger Stakes (2016) Harbour Law (foaled 30 March 2013) is a British Thoroughbred racehorse. Unraced as a two-year-old he showed steady improvement in 20...

SMA Negeri 1 BukittinggiInformasiDidirikan23 Juli 1959JenisNegeriAkreditasiA[1]Nomor Pokok Sekolah Nasional10307523[2]Kepala SekolahDra. Silfa Dusun, M.PdJumlah kelas33 kelasJurusan atau peminatanMIA dan IISRentang kelasX MIA, X IIS; XI MIA, XI IIS; XII MIA, XII IISKurikulumKurikulum 2013StatusDiakuiAlamatLokasiJl. Syekh M. Jamil Jambek No. 36, Bukittinggi, Sumatera Barat, IndonesiaTel./Faks.+62752 22549 - 626202Situs webwww.sman1bukittinggi.sch.idMoto SMA Neger...

 

2022 studio album by A Wilhelm ScreamLose Your DelusionStudio album by A Wilhelm ScreamReleasedApril 14, 2022StudioAnchor End Studio (Trevor Reilly's home studio in New Bedford, Massachusetts)GenreMelodic hardcore, thrash metalLength33:59LabelCreator-Destructor RecordsProducerTrevor Reilly, James WhittenA Wilhelm Scream chronology Partycrasher(2013) Lose Your Delusion(2022) Lose Your Delusion is the seventh overall studio album by Massachusetts-based melodic hardcore band A Wilhelm Sc...

 

Election to the 9th Dáil 1937 Irish general election ← 1933 1 July 1937 1938 → ← outgoing memberselected members →138 seats in Dáil Éireann[a]70 seats needed for a majorityTurnout76.2% 5.1pp   First party Second party Third party   Leader Éamon de Valera W. T. Cosgrave William Norton Party Fianna Fáil Fine Gael Labour Leader since 26 March 1926 September 1934 19 July 1932 Leader's seat Clare Cork Borough Carlow...

Geographical area within a city that is inhabited or frequented by LGBT people Gayborhood redirects here. For the area in Philadelphia, see Washington Square West, Philadelphia § The Gayborhood. The original Rainbow Crossing in Sydney's Surry Hills neighbourhood The Stonewall Inn in the gay village of Greenwich Village, New York City, the cradle of the modern gay rights movement[1][2][3] Part of a series onLGBT topics       LesbianGa...

 

Railway station in Karnataka, India Yelahanka JunctionYalahaṅka JaṅkṣanYelahanka Jankshan Indian Railways stationGeneral informationLocationYelahanka Bangalore, KarnatakaIndiaCoordinates13°01′N 77°33′E / 13.02°N 77.55°E / 13.02; 77.55Elevation915.009 metres (3,002.00 ft)Owned byIndian RailwaysLine(s)Quadruple Electric LinePlatforms5Tracks5ConnectionsTaxiConstructionStructure typeAt GradePlatform levels1ParkingYesOther informationStatusActiveStation c...

 

This parking sign in San Francisco stipulates that motorists may only park for up to two hours from 8 a.m. to 9 p.m. Monday through Saturday unless the applicable residential parking permit is displayed Residential zoned parking is a local government practice of designating certain on-street automobile parking spaces for the exclusive use of nearby residents. It is a tool for addressing overspill parking from neighboring population centers (such as a shopping center, office building, apartmen...

Олександр Отрєп'єв  Старший матрос Загальна інформаціяНародження 28 липня 1992(1992-07-28)Приют, Єланецький район, Миколаївська обл., УкраїнаСмерть 21 січня 2021(2021-01-21) (28 років)Гнутове, Сартанська селищна громада, Маріупольський район, Донецька область, Україна(вогнепальне пора...

 

Painting by the Dutch painter Jan Steen You can help expand this article with text translated from the corresponding article in Dutch. (January 2023) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not transl...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!