| 此條目需要 精通或熟悉相关主题的编者参与及协助编辑。 請邀請適合的人士改善本条目。更多的細節與詳情請參见討論頁。 |
環帶多面體 (全對稱多面體)是一種每個面都相對稱、相等或與正對的(即將兩個面的中心連起可過內接球或外接球球心)面互相對稱的立體。
環帶多面體對於空間的填充
由閔可夫斯基和構成環帶多面體
排列構成環狀多面體
環帶多面體的種類
另外,某些卡塔蘭立體(半正多面體的對偶多面體)也同樣是環帶多面體:
其他有菱形面的環帶多面體:
環帶多面體的分解
雖然多面體通不常能以相同的體積分解、組合成其他多面體(請參考希爾伯特第三問題)。 但任兩個環帶多面體卻得以同體積被切割、重新組合成另一方。
參考資料
- Coxeter, H. S. M. The Classification of Zonohedra by Means of Projective Diagrams. J. Math. Pures Appl. 1962, 41: 137–156.
- Eppstein, David. Zonohedra and zonotopes. Mathematica in Education and Research. 1996, 5 (4): 15–21 [2007-12-07]. (原始内容存档于2021-01-04).
- Grünbaum, Branko. Arrangements and Spreads. Number 10 in Regional Conf. Series in Mathematics, 美國數學學會. 1972.
- Fedorov, E. S. Elemente der Gestaltenlehre. Zeitschrift für Krystallographie und Mineralogie. 1893, 21: 671–694.
- Shephard, G. C. Space-filling zonotopes. Mathematika. 1974, 21: 261–269.
- Taylor, Jean E. Zonohedra and generalized zonohedra. 美國數學月刊. 1992, 99: 108–111. doi:10.2307/2324178.
外部連結